Agricultural pests come in all forms, but worldwide it is small mammals, mostly rodents, that are responsible for the destruction of about 35% of the total world agriculture. To combat rodents, farmers use rodenticides. However, these pesticides are relatively ineffective as they are short-lived
…
During the late 1960’s, hundreds of birds of prey (some of them threatened and endangered species) were killed throughout Israel from secondary poisoning after eating rodents that had been poisoned with rodenticides.
…
Once farmers grasp the concept that their ‘winged’ neighbours can help to solve rodent damage if they stop using poisons, Barn Owls and Kestrels will be able to rise to the occasion and control rodents. By living in harmony, both farmers and these birds will be able to benefit from living in co-existence. As we are just beginning to understand the power of nature we realise its many economic benefits, even in modern times. As Barn Owls and Kestrels truly know no boundaries, they not only solve economic problems, but are also bringing peoples together. This is very much needed in the Middle East.
Researchers in Canada have created a solar-powered micro-machine that is no bigger than the period at the end of this sentence. The tiny machine can carry out basic sensing tasks and can indirectly control the movement of a swarm of bacteria in the same Petri dish.
On such a small device there is little room for batteries, sensors or transmitters. So the solar cell on top delivers power, sending an electric current to both a sensor and a communication circuit. The communication component sends tiny electromagnetic pulses that are detected by an external computer.
The sensor meanwhile detects surrounding pH levels–the higher the pH concentration, the faster the electromagnetic pulses emitted by the micro-machine. The external computer uses these signals to direct a swarm of about 3,000 magnetically-sensitive bacteria, which push the micro-machine around as it pulses. The bacteria push the micro-machine closer to the higher pH concentrations and change its direction if it pulses too slowly. This is more practical than trying to attach the bacteria onto the micro-machines, says Martel, since the bacteria only have a lifespan of a few hours. “It’s like having a propulsion engine on demand,” he says…
Tara Adiseshan, 14, of Charlottesville, Virginia; Li Boynton, 17, of Houston; and Olivia Schwob, 16, of Boston were selected from 1,563 young scientists from 56 countries, regions and territories for their commitment to innovation and science. Each received a $50,000 scholarship from the Intel Foundation.
(video removed, so the embed code has been removed)
In the webcast, Tara Adiseshan, talks about her project studying the evolutionary ties between nematodes (parasites) and sweat bees. She identified and classified the evolutionary relationships between sweat bees and the nematodes (microscopic worms) that live inside them. Tara was able to prove that because the two have such ecologically intimate relationships, they also have an evolutionary relationship. That is to say, if one species evolves, the other will follow.
Li Boynton developed a biosensor from bioluminescent bacteria (a living organism that gives off light) to detect the presence of contaminants in public water. Li’s biosensor is cheaper and easier to use than current biosensors, and she hopes it can be used in developing countries to reduce water toxicity. Li Boynton on What’s Great About Science:
Olivia Schwob isolated a gene that can be used to improve the intelligence of a worm. The results could help us better understand how humans learn and even prevent, treat and cure mental disabilities in the future.
In addition to the three $50,000 top winners, more than 500 Intel International Science and Engineering Fair participants received scholarships and prizes for their groundbreaking work. Intel awards included 19 “Best of Category” winners who each received a $5,000 Intel scholarship and a new laptop. In total, nearly $4 million is scholarships and awards were provided.
I ran across another site that ranks this blog first for engineering, which I always like – even if I realize the ranking is just one computation and hardly definitive.
Interesting webcast by Meeting the Challenge of Simplicity by Giles Colborne. This session addresses abstract notion of simplicity, looks at why it is critical in modern UI design and answers questions: Why does simplicity matter? Is there a meaningful definition of simplicity? Why do design processes and good intentions undermine simplicity? What processes and techniques can software developers use to achieve simplicity?
InfoQ is a great site for watching presentations online. With a simple but superior interface showing a live video with a separate area showing the current slides.
In the webcast an Aukuu bird (Black-crowned Night Heron) fishes using bread as bait. They normally hunt by waiting at the side of a lake and fishing. This individual learned how to bait the fish with bread and improve the fishing results. It also passed on that method to other birds that learned how to use the bait method themselves.
Multiple antibiotic-resistant bacteria has emerged as one of the top public health issues worldwide in the last few decades as the overuse of antibiotics and other factors have caused bacteria to become resistant to common drugs. Chuanwu Xi‘s group chose to study Acinetobacter because it is a growing cause of hospital-acquired infections and because of its ability to acquire antibiotic resistance.
Xi said the problem isn’t that treatment plants don’t do a good job of cleaning the water—it’s that they simply aren’t equipped to remove all antibiotics and other pharmaceuticals entering the treatment plants.
The treatment process is fertile ground for the creation of superbugs because it encourages bacteria to grow and break down the organic matter. However, the good bacteria grow and replicate along with the bad. In the confined space, bacteria share resistant genetic materials, and remaining antibiotics and other stressors may select multi-drug resistant bacteria.
While scientists learn more about so-called superbugs, patients can do their part by not insisting on antibiotics for ailments that antibiotics don’t treat, such as a common cold or the flu, Xi said. Also, instead of flushing unused drugs, they should be saved and disposed of at designated collection sites so they don’t enter the sewer system.
The next step, said Xi, is to see how far downstream the superbugs survive and try to understand the link between aquatic and human superbugs. This study did not look past 100 yards.
Xi’s colleagues include visiting scholar Yongli Zhang; Carl Marrs, associate professor of public health; and Carl Simon, professor of mathematics.
Xi and colleagues found that while the total number of bacteria left in the final discharge effluent declined dramatically after treatment, the remaining bacteria was significantly more likely to resist multiple antibiotics than bacteria in water samples upstream. Some strains resisted as many as seven of eight antibiotics tested. The bacteria in samples taken 100 yards downstream also were more likely to resist multiple drugs than bacteria upstream.
While driving from Dinosaur National Monument to Mesa Verde National Park last year I passed the sight above with the remnants of a hanging flume. The Montrose Placer Mining Company built a 13 mile canal and flume to deliver water from the San Miguel River for gold mining operations. The last 5 miles of the flume clung to the wall of the canyon itself, running along the cliff face in the photo above (see more photos).
Constructed between 1888 and 1891, the 4 foot deep 5 foot 4 inch wide hanging flume carried 23,640,000 gallons of water in a 24 hour period. The mining operations used water and sluice boxes to separate the gold from lighter materials (dirt and gravel).
The technology was not yet available to pump the water directly from the river at the necessary volume and pressure to wash the gold from the gravel, therefore they constructed the flume to transport the water.
The Great Sunflower Project provides a way for you to engage in the ongoing study of bees and colony collapse disorder. The study uses the annual Lemon Queen sunflowers (Helianthus annuus), that can be grown in a pot on a deck or patio or in a garden (and they will send you seeds).
Bees help flowers make seeds and fruits. Bees go to flowers in your garden to find pollen (the powder on the flower) and nectar which is a sweet liquid. Flowers are really just big signs advertising to bees that there is pollen or nectar available – though sometimes a flower will cheat and have nothing! The markings on a flower guide the bee right into where the pollen or nectar is.
All flowers have pollen. Bees gather pollen to feed their babies which start as eggs and then grow into larvae. It’s the larvae that eat the pollen. Bees use the nectar for energy. When a bee goes to a flower in your garden to get nectar or pollen, they usually pick up pollen from the male part of the flower which is called an anther. When they travel to the next flower looking for food, they move some of that pollen to the female part of the next plant which is called a stigma. Most flowers need pollen to make seeds and fruits.
After landing on the female part, the stigma, the pollen grows down the stigma until it finds an unfertilized seed which is called an ovary. Inside the ovary, a cell from the pollen joins up with cells from the ovary and a seed is born! For many of our garden plants, the only way for them to start a new plant is by growing from a seed Fruits are just the parts of the plants that have the seeds. Some fruits are what we think of as fruits when we are in the grocery store like apples and oranges. Other fruits are vegetables like tomatoes and cucumbers and peppers.
The sun is the least active it’s been in decades and the dimmest in a hundred years. The lull is causing some scientists to recall the Little Ice Age, an unusual cold spell in Europe and North America, which lasted from about 1300 to 1850. The coldest period of the Little Ice Age, between 1645 and 1715, has been linked to a deep dip in solar storms known as the Maunder Minimum.
…
Sunspots, which can be visible without a telescope, are dark regions that indicate intense magnetic activity on the sun’s surface. Such solar storms send bursts of charged particles hurtling toward Earth that can spark auroras, disrupt satellites, and even knock out electrical grids.