Tag Archives: amazing

Build Your Own Tabletop Interactive Multi-touch Computer

This is a fantastic Do-It_Yourself (DIY) engineering story. Very interesting, definitely go read the whole article: Build Your Own Multitouch Surface Computer

First, some acknowledgments are in order. Virtually all the techniques used to create this table were discovered at the Natural User Interface Group website, which serves as a sort of repository for information in the multitouch hobbyist community.

In order for our setup to work, we needed a camera that senses infrared light, but not visible light. It sounds expensive, but you’d be surprised. In this section, we’ll show you how we created an IR camera with excellent resolution and frame-rate for only $35—the price of one PlayStation 3 Eye camera. “But that’s not an IR camera,” you say? We’ll show you how to fix that.

As it turns out, most cameras are able to sense infrared light. If you want to see first-hand proof that this is the case, try this simple experiment: First, find a cheap digital camera. Most cell phone cameras are perfect for this. Next, point it at the front of your TV’s remote control. Then, while watching the camera’s display, press the buttons on the remote. You’ll see a bluish-white light that is invisible to the naked eye. That’s the infrared light used by the remote to control the TV.

Like the computer, the projector we used for the build was something we scavenged up. The major concern for a projector to use in this kind of system is throw distance—the ratio between projection distance and image size. Short-throw projectors, which are sold by all the major projector brands, work the best for this kind of project, because they can be set up at the bottom of the cabinet and aimed directly at the surface. Unfortunately, they also tend to be more expensive.

Ever thrifty, we went with a projector we could use for free: an older home-theater projector borrowed from a friend. Because of the longer throw distance on this model, we had to mount the projector near the top of the cabinet, facing down, and use a mirror to reflect the image up onto the screen. For this we ordered a front-side mirror (a mirror with the reflective surface on the front of the glass, rather than behind it) to eliminate any potential “ghosting” problems, caused by dual reflections from the front and back of the glass in an ordinary mirror.

Related: Home Engineering: Gaping Hole CostumeVery Cool Wearable Computing Gadget from MIT‘DIY’ kidney machine saves girlHolographic Television on the WayAutomatic Cat FeederVideo Goggles

Very Cool Wearable Computing Gadget from MIT

Pattie Maes presentation at TED shows a very cool prototype for wearable, useful computing spearheaded by Pranav Mistry (who received a standing ovation at TED). It’s a wearable device with a projector that paves the way for profound interaction with our environment.

The prototype of the system cost only $350. The software, created by them, obviously is the key, but how amazing is that, $350 for the hardware used in the prototype! There is a useful web site on the Sixth Sense project.

The SixthSense prototype is comprised of a pocket projector, a mirror and a camera. The hardware components are coupled in a pendant like mobile wearable device. Both the projector and the camera are connected to the mobile computing device in the user’s pocket. The projector projects visual information enabling surfaces, walls and physical objects around us to be used as interfaces; while the camera recognizes and tracks user’s hand gestures and physical objects using computer-vision based techniques.

The software program processes the video stream data captured by the camera and tracks the locations of the colored markers (visual tracking fiducials) at the tip of the user’s fingers using simple computer-vision techniques. The movements and arrangements of these fiducials are interpreted into gestures that act as interaction instructions for the projected application interfaces. The maximum number of tracked fingers is only constrained by the number of unique fiducials, thus SixthSense also supports multi-touch and multi-user interaction.

Related: Awesome Cat CamCool Mechanical Simulation SystemEngineering a Better World: Bike Corn-Shellerposts on cool gadgets

Macropinna Microstoma: Fish with a Transparent Head

That is a pretty awesome fish. The eyes were believed to be fixed in place and seemed to provide only a “tunnel-vision” view of whatever was directly above the fish’s head. A new paper by Bruce Robison and Kim Reisenbichler shows that these unusual eyes can rotate within a transparent shield that covers the fish’s head. This allows the barreleye to peer up at potential prey or focus forward to see what it is eating.

Deep-sea fish have adapted to their pitch-black environment in a variety of amazing ways. Several species of deep-water fishes in the family Opisthoproctidae are called “barreleyes” because their eyes are tubular in shape. Barreleyes typically live near the depth where sunlight from the surface fades to complete blackness. They use their ultra-sensitive tubular eyes to search for the faint silhouettes of prey overhead.

Full press release

Related: Ocean LifeFemale Sharks Can Reproduce AloneOctopus Juggling Fellow Aquarium OccupantsAmazing Science: Retroviruses

MRI That Can See Bacteria, Virus and Proteins

IBM team boosts MRI resolution

The researchers demonstrated this imaging at a resolution 100 million times finer than current MRI. The advance could lead to important medical applications and is powerful enough to see bacteria, viruses and proteins, say the researchers.

The researchers said it offered the ability to study complex 3D structures at the “nano” scale. The step forward was made possible by a technique called magnetic resonance force microscopy (MRFM), which relies on detecting very small magnetic forces.

In addition to its high resolution, MRFM has the further advantage that it is chemically specific, can “see” below surfaces and, unlike electron microscopy, does not destroy delicate biological materials.

Now, the IBM-led team has dramatically boosted the sensitivity of MRFM and combined it with an advanced 3D image reconstruction technique. This allowed them to demonstrate, for the first time, MRI on biological objects at the nanometre scale.

That is very cool.

Related: IBM Research Creates Microscope With 100 Million Times Finer Resolution Than Current MRIMagnetic Resonance Force Microscopy (from Stanford)Nanotechnology Breakthroughs for Computer ChipsSelf-assembling Nanotechnology in Chip ManufacturingNanoparticles to Aid Brain Imaging

Evolution, Methane, Jobs, Food and More

photo of sunset on Mars
Photo from May 2005 by NASA’s Mars Exploration Rover Spirit as the Sun sank below the rim of Gusev crater on Mars.

Science Friday is a great National Public Radio show. The week was a great show covering Antimicrobial Copper, Top Jobs for Math and Science, Human-Driven Evolution, Methane On Mars, Fish with Mercury and more. This show, in particular did a great job of showing the scientific inquiry process in action.

“Fishing regulations often prescribe the taking of larger fish, and the same often applies to hunting regulations,” said Chris Darimont, one of the authors of the study. “Hunters are instructed not to take smaller animals or those with smaller horns. This is counter to patterns of natural predation, and now we’re seeing the consequences of this management.” Darimont and colleagues found that human predation accelerated the rate of observable trait changes in a species by 300 percent above the pace observed within purely natural systems, and 50 percent above that of systems subject to other human influences, such as pollution

Very interesting stuff, listen for more details. A part of what happens is those individuals that chose to focus on reproducing early (instead of investing in growing larger, to reproduce later) are those that are favored (they gain advantage) by the conditions of human activity. I am amazed how quickly the scientists says the changes in populations are taking place.

And Methane On Mars is another potentially amazing discovery. While it is far from providing proof of live on Mars it is possibly evidence of life on Mars. Which would then be looked back on as one of the most important scientific discoveries ever. And in any even the podcast is a great overview of scientists in action.

This week astronomers reported finding an unexpected gas — methane — in the Martian atmosphere. On Earth, a major source of methane is biological activity. However, planetary scientists aren’t ready to say that life on Mars is to blame for the presence of the gas there, as geochemical processes could also account for the finding. The find is intriguing especially because the researchers say they have detected seasonal variations of methane emissions over specific locations on the planet.

Martian Methane Reveals the Red Planet is not a Dead Planet
The Mars Methane Mystery: Aliens At Last?

Related: Mars Rover Continues ExplorationCopper Doorknobs and Faucets Kill 95% of SuperbugsViruses and What is Lifeposts on evolutionScience and Engineering Link Directory

Friday Cat Fun #10: Cat and Crow Friends

Very cool, it is amazing what happens in life. And that bird is remarkably patient. Getting, even playfully, ambushed by a cat doesn’t seem like something what would come naturally. At least with polar bears and huskies they both are used to playing rough with their own.

Related: fun with catsBunny and KittensBird Brains: thinking crowsPhotos by Fritz the Catanimal planet on the cat and crow

Rat Brain Cells, in a Dish, Flying a Plane

Adaptive Flight Control With Living Neuronal Networks on Microelectrode Arrays (open access paper) by Thomas B. DeMarse and Karl P. Dockendorf Department of Biomedical Engineering, University of Florida

investigating the ability of living neurons to act as a set of neuronal weights which were used to control the flight of a simulated aircraft. These weights were manipulated via high frequency stimulation inputs to produce a system in which a living neuronal network would “learn” to control an aircraft for straight and level flight.

A system was created in which a network of living rat cortical neurons were slowly adapted to control an aircraft’s flight trajectory. This was accomplished by using high frequency stimulation pulses delivered to two independent channels, one for pitch, and one for roll. This relatively simple system was able to control the pitch and roll of a simulated aircraft.

When Dr. Thomas DeMarse first puts the neurons in the dish, they look like little more than grains of sand sprinkled in water. However, individual neurons soon begin to extend microscopic lines toward each other, making connections that represent neural processes. “You see one extend a process, pull it back, extend it out — and it may do that a couple of times, just sampling who’s next to it, until over time the connectivity starts to establish itself,” he said. “(The brain is) getting its network to the point where it’s a live computation device.”

To control the simulated aircraft, the neurons first receive information from the computer about flight conditions: whether the plane is flying straight and level or is tilted to the left or to the right. The neurons then analyze the data and respond by sending signals to the plane’s controls. Those signals alter the flight path and new information is sent to the neurons, creating a feedback system.

“Initially when we hook up this brain to a flight simulator, it doesn’t know how to control the aircraft,” DeMarse said. “So you hook it up and the aircraft simply drifts randomly. And as the data come in, it slowly modifies the (neural) network so over time, the network gradually learns to fly the aircraft.”

Although the brain currently is able to control the pitch and roll of the simulated aircraft in weather conditions ranging from blue skies to stormy, hurricane-force winds, the underlying goal is a more fundamental understanding of how neurons interact as a network, DeMarse said.

Related: Neural & Hybrid Computing Laboratory @ University of Florida – UF Scientist: “Brain” In A Dish Acts As Autopilot, Living ComputerRoachbot: Cockroach Controlled RobotNew Neurons in Old Brainsposts on brain researchViruses and What is LifeGreat Self Portrait of Astronaut Engineer

Bacteria and Efficient Food Digestion

Gut Bacteria May Cause And Fight Disease, Obesity

“We’re all sterile until we’re born,” says Glenn Gibson, a microbiologist at the University of Reading in Britain. “We haven’t got anything in us right up until the time we come into this big, bad, dirty world.”

But as soon as we pass out of the birth canal, when we are fetched by a doctor’s hands, placed in a hospital crib, put on our mother’s breast, when we drag a thumb across a blanket and stick that thumb in our mouths, when we swallow our first soft food, we are invaded by all sorts of bacteria. Once inside, they multiply – until the bacteria inside us outnumber our human cells.

University of Chicago immunologist Alexander Chervonsky, with collaborators from Yale University, recently reported that doses of the right stomach bacteria can stop the development of type 1 diabetes in lab mice. “By changing who is living in our guts, we can prevent type 1 diabetes,” he told The Wall Street Journal.

The bottom line: We now have two sets of genes to think about – the ones we got from our parents and the ones of organisms living inside us. Our parents’ genes we can’t change, but the other set? Now that is one of the newest and most exciting fields in cell biology.

Follow link with related podcast: Gut bacteria may cause and fight, disease, obesity. This whole area of the ecosystem within us and our health I find fascinating. And I fall for confirmation bias on things like becoming inefficient at converting food to energy as a way reduce obesity.

You could have two people sitting down to a bowl of cheerios, they could each eat the same number of cheerios but because of a difference in their gut bacteria one will get more calories than the other.

.

They then gave an example of the difference being 95 calories versus 99 calories. Hardly seems huge but it would add up. Still that is a less amazing difference than I was expecting.

Related: Energy Efficiency of DigestionWaste from Gut Bacteria Helps Host Control WeightObesity Epidemic Partially ExplainedForeign Cells Outnumber Human Cells in Our Bodies

Monitor-Merrimac Memorial Bridge-Tunnel

photo of Monitor-Merrimac Memorial Bridge-Tunnel photo of Hampton Roads Virginia Bridge-Tunnel

Now that is some cool engineering: a bridge that becomes a tunnel. The Monitor-Merrimac Memorial Bridge-Tunnel is a 4.6 miles (7.4 km) crossing for Interstate 664 in Hampton Roads, Virginia, USA. It is a four-lane bridge-tunnel composed of bridges, trestles, man-made islands, and tunnels under a portion of the Hampton Roads harbor where the James, Nansemond, and Elizabeth Rivers come together in the southeastern portion of Virginia.

If you like this post, please look at our other popular posts, and consider adding our blog feed to your blog reader. Posts such as: Bacteriophages: The Most Common Life-Like Form on Earth, Robot Finds Lost Shoppers and Provides Directions and The Engineer That Made Your Cat a Photographer

It was completed in 1992, after 7 years of construction, at a cost $400 million, and it includes a four-lane tunnel that is 4,800 feet (1,463 m) long, two man-made portal islands, and 3.2 miles (5.1 km) of twin trestle.

Photos by Virginia Department of Transportation. Details from wikipedia. Google satellite view of the bridge-tunnel.

Related: Extreme EngineeringCool Falkirk Wheel Canal LiftThe Dynamics of Crowd Disasters: An Empirical StudyA ‘Chunnel’ for Spain and MoroccoSwiss dig world’s Longest Tunnel

Foreign Cells Outnumber Human Cells in Our Bodies

This is one of those area I find very interesting: People Have More Bacterial Cells than Human Cells. Colin Nickerson has written an interesting article on the topic: Of microbes and men

Scientists estimate that 90 percent of the cells contained in the human body belong to nonhuman organisms – mostly bacteria, but also a smattering of fungi and other eensy entities. Some 100 trillion microbes nestle in niches from our teeth to our toes.

But what’s setting science on its heels these days is not the boggling numbers of bugs so much as the budding recognition that they are much more than casual hitchhikers capable of causing disease. They may be so essential to well-being that humans couldn’t live without them.

In this emerging view, humans and their microbes – or, as some biologists playfully put it, microbes and their attached humans – have evolved together to form an extraordinarily complex ecosystem.

The understanding of the complex interaction is something I came to through reading on the overuse of antibiotics. And the more I read the more interesting it gets.

“We can’t take nutrition properly without bacteria. We can’t fight bad germs without good germs,” he said. “It may turn out that secretions from bacteria affect not only long-term health, but hour-by-hour moods – could a person’s happiness depend on his or her bugs? It’s possible. Our existences are so incredibly intertwined.”

However, in the opinion of some researchers, this strange union may be headed for trouble because of profligate use of antibiotics and antiseptic lifestyles that deter the transfer of vital strains of bacteria that have swarmed in our systems at least since early humans ventured out of Africa.

Related: Tracking the Ecosystem Within UsSkin BacteriaMove over MRSA, C.diff is HereCats Control Rats … With ParasitesBeneficial Bacteria