Tag Archives: appropriate technology

Fixers Collective

Very cool. I like everything about this idea. I like the reuse (very environmentally friendly). I like the humanity and psychology of connecting with others. I like the tinkering/learning/fixing attitude and behavior. I like the very well done use of the internet to help fund such efforts. I like the exploration of the products and object we use. I like the rejection of a disposable attitude (just throw it away). I like the appropriate technology attitude. I made a donation, you can too (see what projects I am funding).

Related: Fund Teacher’s Science ProjectsScience Toys You Can Make With Your Kidscharity related posts

sOccket: Power Through Play

In a fun example of appropriate technology and innovation 4 college students have created a football (soccer ball) that is charged as you play with it. The ball uses an inductive coil mechanism to generate energy, thanks in part to a novel Engineering Sciences course, Idea Translation. They are beta testing the ball in Africa: the current prototypes can provide light 3 hours of LED light after less than 10 minutes of play. Jessica Matthews ’10, Jessica Lin ’09, Hemali Thakkara ’11 and Julia Silverman ’10 (see photo) created the eco-friendly ball when they all were undergraduates at Harvard College.

photo of sOccket creators: Jessica Matthews, Jessica Lin, Hemali Thakkara and Julia Silverman

sOccket creators: Jessica Matthews, Jessica Lin, Hemali Thakkara and Julia Silverman

They received funding from: Harvard Institute for Global Health and the Clinton Global Initiative University. The

sOccket won the Popular Mechanics Breakthrough Award, which recognizes the innovators and products poised to change the world. A future model could be used to charge a cell phone.

From Take part: approximately 1.5 billion people worldwide use kerosene to light their homes. “Not only is kerosene expensive, but its flames are dangerous and the smoke poses serious health risks,” says Lin. Respiratory infections account for the largest percentage of childhood deaths in developing nations—more than AIDS and malaria.

Related: High school team presenting a project they completed to create a solution to provide clean waterWater Pump Merry-go-RoundEngineering a Better World: Bike Corn-ShellerGreen Technology Innovation by College Engineering Students

Watch a June 2010 interview on the ball:
Continue reading

Appropriate Technology: Rats Helping Humans

Giant rats put noses to work on Africa’s land mine epidemic by Eliott C. McLaughlin

Bart Weetjens is the brain and Buddhist monk behind APOPO (a Dutch acronym meaning Anti-Personnel Land Mines Detection Product Development), which trains HeroRats. He said Mushi’s initial repulsion is common.

Prejudice against rats is “deep in our psyche” and has roots in the Middle Ages when the rodents were blamed for the plague, Weetjens said. He quickly cited Black Death’s rightful culprit: fleas.

The International Campaign to Ban Landmines says land mines and related devices were responsible for 73,576 casualties worldwide from 1999 to 2009. Campaign data from 2007 say there were 5,426 recorded casualties, with almost a fifth of them in 24 African countries.

The cost to train a rat is 6,000 euros ($7,700), roughly a third of what it costs to train a dog. Where dogs need expansive kennel facilities and regular veterinary care because of African climates, APOPO’s kennel facilities at Sokoine University of Agriculture in Morogoro, Tanzania, can house up to 300 rats. The rats see a single vet once a week and are much easier to transport than dogs, Weetjens said.

It is very sad what people do to each (setting up land mines to blow each other up for example). Thankfully we also do great things. I particularly like the engineering mindset behind appropriate technology solutions as I have written many times. They are also looking to have rats help detect tb and cancers. You can fund a rat for 5 Euros (about $6.5) a month to help free the world of landmines.

Related: applying the technology wellEngineering a Better World: Bike Corn-ShellerWater Pump Merry-go-RoundHigh School Inventor Teams @ MIT

See a video of a rat at work:
Continue reading

Letting Children Learn – Hole in the Wall Computers

The hole in the wall experiments are exactly the kind of thing I love to lean about. I wrote about them in 2006, what kids can learn.

Research finding from the Hole in the Wall foundation:

Over the 4 year research phase (2000-2004), HiWEL has extensively studied the impact of Learning Stations on children. Hole-in-the-Wall Learning Stations were installed in diverse settings, the impact of interventions was monitored and data was continually gathered, analyzed and interpreted. Rigorous assessments were conducted to measure academic achievement, behaviour, personality profile, computer literacy and correlations with socio-economic indicators.

The sociometric survey found:

  • Self-organizing groups of children who organize themselves into Leaders (experts), Connectors and Novice groups.
  • Leaders and Connectors identified seem to display an ability to connect with and teach other users.
  • Key leaders on receiving targeted intervention, play a key role in bringing about a “multiplier effect in learning” within the community.
  • Often girls are seen to take on the role of Connector, who initiates younger children and siblings (usually novices with little or no exposure to computers) and connects them to the leaders in the group

I believe traditional education is helpful. I believe people are “wired” to learn. They want to learn. We need to create environments that let them learn. We need to avoid crushing the desire to learn (stop de-motivating people).

If you want to get right to talking about the hole in the wall experiments, skip to the 8 minute mark.

Related: Providing Computer to Remote Students in NepalTeaching Through TinkeringKids Need Adventurous PlayScience Toys You Can Make With Your Kids

Sub $100 Tablet in 2011

I must admit I am skeptical. If it happens this looks very cool.

One Laptop Per Child Revamps Tablet Plans

On Thursday the foundation announced a partnership with chip maker Marvell to collaborate on a sleek and cheap touch-screen tablet for developing-world school children, a device it now plans to launch at the Consumer Electronics Show in January 2011 for less than $100. One Laptop Per Child (OLPC) says that’s close to two years ahead of its scheduled release for the so-called XO-3, the long-awaited upgrade to the non-profit’s XO, the so-called “hundred-dollar laptop” launched in 2007.

The first XO, for instance, never reached its price target of $100; it now sells for $172. About 2 million of the devices have been sold–a significant achievement for a small nonprofit, but far less than its initial projections. And a flashy double touch-screen model known as the XO-2 was quietly scrapped last year when OLPC decided it couldn’t be made cheaply enough.

As for Marvell, the partnership with OLPC could lend more credibility to its Moby tablet, which is designed for educational uses like electronic textbooks. OLPC is also building Marvell’s chips into an upgraded form of its XO, known as the XO 1.75, later this year. “When we first met Nicholas, we were very moved by his leadership,” says Dai Weili, Marvell’s chief operating office. “We’ve got the cost structure, feature capability and scalability to support his vision for many years to come.”

Related: OLPC and Marvell partner to design a line of tablets$100 Laptops for the WorldA Child’s View of the OLPC LaptopApple’s iPad

Ironmaking at the National Museum of Science and Technology in Stockholm

Joakim Storck discusses pre–industrial Swedish and Japanese techniques for iron and sword making from a museum demonstration at Tekniska museet. Ironmaking at the National museum of science and technology, Stockholm 2005

Bricklaying is a messy story. The mortar consists of clay, sand and horse manure (if available), mixed with water to a fairly loose batter. The best finish is obtained if you work with your hands as the mortar is placed on, and smears with water so that the surface becomes smooth and fine. When then furnace is ready, it is dried through slow heating by wood without blasting, until the moist has been driven out of the mud. At this stage, heating should be quite cautious in order to avoid cracking.

Then, on Friday September 9, we went again with a fully loaded trailer from Dalarna in the direction of Stockholm. More than a few people were probably turning their heads when we passed, because the trailer was dominated by a large bellow — our newly built two chamber bellow with an estimated bladder capacity of up to 800 litres per minute. In addition, we brought fire wood, iron rods, pliers, some stumps and other stuff needed for the furnace operation.

We made one run each on Saturday and Sunday. Each time we charged a total of about 10kg ore added in amounts of about 1kg every 20 minute. For each charge, we added about twice the amount of charcoal. Discharging of the loupe was scheduled for two o’clock, and by that time a fairly large crowd had gathered to see the show. This time we managed to get the loupe out of the furnace without too much trouble. Worse was that the process took longer than expected, but the crowd seemed to be patient and people stayed around until the end.

Related: Science Museums Should Grow Minds Not RevenueCrystal Growth – Manganese Oxides8 Year Old Math Prodigy Corrects Science Exhibit

Green Technology Innovation by College Engineering Students

With prizes totaling more than $100,000 in value, this year’s Climate Leadership Challenge is believed to be the most lucrative college or university competition of its kind in the country. The contest was open to all UW-Madison students.

A device that would help provide electricity efficiently and at low cost in rural areas of developing countries took the top prize – $50,000 – this week in a student competition at the University of Wisconsin-Madison for innovative ideas to counteract climate change.

The “microformer” is the brainchild of Jonathan Lee, Dan Ludois, and Patricio Mendoza, all graduate students in electrical engineering. Besides the cash prize, they will receive a promotional trip worth $5,000 and an option for a free one-year lease in the University Research Park’s new Metro Innovation Center on Madison’s east side.

“We really want to see implementation of the best ideas offered,” said Tracey Holloway, director of the Nelson Institute Center for Sustainability and the Global Environment at UW-Madison, which staged the contest for the second year in a row. “The purpose of this competition is to make an impact on climate change.”

The runner-up for the “most action-ready idea” was a proposal to promote the use of oil from Jatropha curcas plants to fuel special cooking stoves in places like Haiti. UW-Madison seniors Eyleen Chou (mechanical engineering), Jason Lohr (electrical engineering), Tyler Lark (biomedical engineering/mathematics) won $10,000 for their scheme to reduce deforestation by lowering demand for wood charcoal as a cooking fuel.

CORE Concept, a technology that would cut emissions from internal combustion engines by using a greater variety of fuels, won mechanical engineering doctoral students Sage Kokjohn, Derek Splitter, and Reed Hanson $15,000 as the “most innovative technical solution.”

SnowShoe, a smart phone application that would enable shoppers to check the carbon footprint of any item in a grocery store by scanning its bar code, won $15,000 as the “most innovative non-technical solution.” Graduate students Claus Moberg (atmospheric and oceanic science), Jami Morton (environment and resources), and Matt Leudtke (civil and environmental engineering) submitted the idea.

Other finalists were REDCASH, a plan to recycle desalination wastewater for carbon sequestration and hydrogen fuel production, by doctoral student Eric Downes (biophysics) and senior Ian Olson (physics/engineering physics); and Switch, an energy management system that integrates feedback and incentives into social gaming to reduce personal energy use, by doctoral students David Zaks (environment and resources) and Elizabeth Bagley (environment and resources/educational psychology).

Related: University of Michigan Wins Solar Car Challenge AgainCollegiate Inventors Competition$10 Million X Prize for 100 MPG Car

$100,000 Lemelson-MIT Award for Sustainability

[Sadly the video was made private so I removed it. It is disappointing how often people fail to follow decade old usability advice to make internet urls permanent]

According to the United Nations, more than 40 percent of Africans live in poverty, subsisting on less than US$1 a day. As co-founder and CEO of the nonprofit social enterprise KickStart, Fisher develops and markets moneymaking tools such as low-cost, human-powered irrigation pumps that improve the lives of small-scale rural farmers – the majority of the poor in sub-Saharan Africa.

“These poor rural farmers have one asset: a small plot of land; and one basic skill: farming. The best business they can pursue is irrigated farming,” Fisher explained. “Once they employ irrigation, the farmers can grow and sell high-value crops, like fruits and vegetables. They can grow year-round and reap four or five harvests, instead of waiting for the rain to grow a staple crop once or twice a year.”

Related: High School Inventor Teams @ MITWater Pump Merry-go-RoundAppropriate Technology: Self Adjusting GlassesFixing the World on $2 a Day
Continue reading

Electric Wind

photo of William Kamkwamba on his windmillphoto of William Kamkwamba on his windmill from his blog.

I have written about William Kamkwamba before: Inspirational EngineerHome Engineering: Windmill for Electricity. And along with the post, Make the World Better, donated to his cause. His new book, The Boy Who Harnessed the Wind, is quite enjoyable and provides an interesting view of how he persevered. His talk of the famine, not being able to afford school and putting together a windmill using scrape parts and a few books from the library (donated by the American government – much better foreign aid than all the military weapons that are often counted as aid) is inspirational. And should help many sitting in luxury understand the privileged lives they lead.

“I’d become very interested in how things worked, yet never thought of this as science. In addition to radios, I’d also become fascinated by how cards worked, especially how petrol operated an engine. How does this happen? I thought? Well, that’s easy to find out – just ask someone with a car… But no one could tell me… Really how can you drive a truck and not know how it works?” (page 66)

“Using Energy, and this book has since changed my life… All I needed was a windmill, and then I could have lights. No more kerosene lamps that burned out eyes… I could stay awake at night reading instead of going to bed at seven with the rest of Malawi. But most important, a windmill could also rotate a pump for water and irrigation.” (page 158)

William set out to demonstrate his windmill for the first time to a skeptical crowd saying (page 193)

“Let’s see how crazy this boy really is.”… “Look,” someone said. “He’s made light!”… “Electric wind!” I shouted. “I told you I wasn’t mad!”

I like how the story shows how long, hard work, reading, experimenting and learning is what allowed William to success (page 194-5)

For the next month, about thirty people showed up each day to stare at the light. “How did you manage such a thing?” They asked. “Hard work and lots of research,” I’d say, trying not to sound too smug…
[to William’s father] “What an intelligent boy. Where did he get such ideas?”
“He’s been reading lots of books. Maybe from there?”
“They teach this in school?”
“He was forced to drop. He did this on his own.”
The diagram demonstrated twenty-four volts being transformed to two hundred forty. I knew voltage increased with each turn of wire. The diagram showed the primary coil to have two hundred turns, while the secondary had two thousand. A bunch of mathematical equations were below the diagram – I assumed they explained how I could make my own conversions – but instead I just wrapped like mad and hoped it would work. (page 200)
Soon I was attacking every idea with its own experiment. Over the next year, there was hardly a moment when I wasn’t planning or devising some new scheme. And though the windmill and radio transmitter had both been successes, I couldn’t say the same for a few other experiments. (page 215)

William is now attending the African Leadership Academy in South Africa, with an amazing group of classmates. See how you can support the Moving Windmills Projects.

Related: Teen’s DIY Energy Hacking Gives African Village New HopeMake the World BetterWilliam Kamkwamba on the Daily ShowWhat Kids can Learnappropriate technology

Monkey Bridge

Monkey see Monkey do

When you visit Diani Beach, Kenya’s version the Florida keys, look up and you’ll see 20 rope bridges swinging over the highway – what’s that little bulge with a tail? Before you flash by, you will realise that it’s a monkey sitting up there. Yes it’s watching you! And then, a burst of action as an entire troop of black and white might start galloping across the wildly swaying bridge!

Being naturally shy, the colobus initially stared at the bridges gadgets with disdain until the more inquisitive and daring Sykes monkey began to see the logic. Once the Sykes and even vervet monkeys started using the bridges, the colobus followed suit, and are now very comfortable with their arboreal walkways.

Related: Colobus TrustEngineering a Better World: Bike Corn-Sheller‘Refrigerator’ Without ElectricityMassive Gorilla Population FoundOrangutan Attempts to Hunt Fish with Spear