Tag Archives: Career

Who Killed the Software Engineer?

Computer Science Education: Where Are the Software Engineers of Tomorrow? by Dr. Robert B.K. Dewar and Dr. Edmond Schonberg

Over the last few years we have noticed worrisome trends in CS education. The following represents a summary of those trends:
1. Mathematics requirements in CS programs are shrinking.
2. The development of programming skills in several languages is giving way to cookbook approaches using large libraries and special-purpose packages.
3. The resulting set of skills is insufficient for today’s software industry (in particular for safety and security purposes) and, unfortunately, matches well what the outsourcing industry can offer. We are training easily replaceable professionals.

As faculty members at New York University for decades, we have regretted the introduction of Java as a first language of instruction for most computer science majors. We have seen how this choice has weakened the formation of our students, as reflected in their performance in systems and architecture courses.

Every programmer must be comfortable with functional programming and with the important notion of referential transparency. Even though most programmers find imperative programming more intuitive, they must recognize that in many contexts that a functional, stateless style is clear, natural, easy to understand, and efficient to boot.

An additional benefit of the practice of Lisp is that the program is written in what amounts to abstract syntax, namely the internal representation that most compilers use between parsing and code generation. Knowing Lisp is thus an excellent preparation for any software work that involves language processing.

This is an excellent article: any CS students or those considering careers as programmers definitely should read this. Also read: Computer Science Education.

via: Who Killed the Software Engineer?

Dewar, a professor emeritus of computer science at New York University, believes that U.S. colleges are turning out programmers who are – there’s no nice way to say this – essentially incompetent.

Related: A Career in Computer ProgrammingProgramming Grads Meet a Skills Gap in the Real WorldProgramming RubyWhat you Need to Know to Be a Computer Game ProgrammerHiring Software DevelopersWhat Ails India’s Software Engineers?

Computer Science PhD Overview

A nice overview by Mor Harchol-Balter at Carnegie Mellon University on Applying to Ph.D. Programs in Computer Science:

A Ph.D. is a long, in depth research exploration of one topic. By long we’re typically talking about 6 years. By in depth we mean that at the end of the Ph.D. you will be the world expert or close to it in your particular area.

In contrast, a Ph.D. program typically requires typically less than 10 courses during the entire 6
years (at CMU there are 5 required “core” courses, and 3 required “electives”). The emphasis in the
Ph.D. is not on classes, but rather on research.

If you choose to be a professor at a research university, your life will consist of the following
tasks: (i) doing research on anything you like, (ii) working with graduate students, (iii) teaching
classes, (iv) applying for grants, (v) flying around to work with other researchers and to give talks
on your research, (vi) doing service for your department and school (like giving this talk). Note that
I say “your life” rather than your job, because for new faculty, your life becomes your job. It’s a
fantastic job/life for me because I love these activities, so I’m happy to work hard at all of them, but
it’s not right for everyone.

The document also offers a list of fellowships including: the NSF Graduate Research Fellowship and NDSEG Graduate Fellowship (disclosure: I work for ASEE administering part of the process for these, and other, fellowships – this blog is my own and not associated with ASEE).

Related: Curious Cat Science Fellowships and Scholarships directoryASEE Fellowships DirectoryScience and Engineering Doctoral Degrees WorldwideWorldwide Science and Engineering Doctoral Degree DataResearch Career in Industry or Academia

Young Geneticists Making a Difference

Young Geneticists Making a Difference

After an early phase of discouragement, Johannes Krause was able to follow his long interest in genetics and even link it to another passion of his, paleoanthropology. Krause initially chose to study biochemistry at the University of Leipzig. But “I was almost about to quit” at the frustration of learning much more about basic chemistry than biology, he says. However, in the third year of his bachelor’s degree, he took some specialised courses in genetics as an Erasmus student at the University College Cork in Ireland that revived his interest for the field.

Back in Leipzig, a summer internship on comparing gene expression between humans and chimpanzees at the Max Planck Institute for Evolutionary Anthropology sparked Krause’s enthusiasm for good. He stayed on in the lab as a research assistant for 2 years before graduating in 2005. While there, Krause helped develop a biological method to read large pieces of ancient DNA, sequence the complete mitochondrial genome of the mammoth from fossil samples, and place it in the context of evolution. “Johannes has great technical skill and the judgment to distinguish a good project from a blind alley. Like few others he can see the interesting pattern that can hide in sometimes confusing data,” Svante Pääbo, his principal investigator, writes in an e-mail to Science Careers.

Related: posts on science and engineering careersscience internshipsengineering internshipsNSF Graduate Research Fellow Profiles

Presidential Early Career Awards for Scientists and Engineers

The Presidential Early Career Awards for Scientists and Engineers, established in 1996, honors the most promising researchers in the Nation within their fields. Nine federal departments and agencies annually nominate scientists and engineers who are at the start of their independent careers and whose work shows exceptional promise for leadership at the frontiers of scientific knowledge. Participating agencies award these talented scientists and engineers with up to five years of funding to further their research in support of critical government missions.

Awards were announced today – links to some of the awardees:

  • Jelena Vuckovic, Assistant Professor of Electrical Engineering, Stanford University
  • Matthew Rodell, Physical Scientist, NASA
  • Katerina Akassoglou, Assistant Professor of Pharmacology, University of California, San Diego
  • Carlos Rinaldi, Associate Professor of Chemical Engineering University of Puerto Rico at Mayagüez
  • Ahna Skop, Assistant Professor of Genetics, University of Wisconsin-Madison
  • Krystyn J. Van Vliet, Assistant Professor of Materials Science and Engineering, MIT
  • Odest Chadwicke Jenkins, Assistant Professor, Department of Computer Science, Brown University

Related: 2006 MacArthur FellowsYoung Innovators Under 35Presidential Early Career Award for Scientists and Engineers (2006)NSF Release on 2007 awardees that are also NSF CAREER awardees

Internships Pair Students with Executives

photo of Zhen Xia Florence Hudson

Preparing to Lead: Internships pair students with executives

Mechanical and aerospace engineering major Zhen Xia is accustomed to solving problems that have cut-and-dried solutions, but an internship at IBM this past summer taught him how to approach problems that don’t have one right answer.

As part of a new internship program, Xia spent three months working with senior marketing executives at the IBM corporate offices in Somers, N.Y. From analyzing the brand’s image to establishing a business case for a new product launch, he found himself in the midst of the complicated intricacies of the business world.

“Unlike technical problem-solving where everything is black and white, problem-solving in business deals heavily with people and customers who have many different viewpoints,” Xia said. “In business, there are various shades of gray, which make things exciting and interesting.”

Related: science internshipsengineering internshipsGoogle Summer of Code 2007The Naval Research Enterprise Intern Program

Second Life for Scientist

A farewell to academia and hello to Second Life – a professor of Physics and Astronomy moves on the the second act of his professional career.

Loved the teaching. Loved the science. Couldn’t take the politics. Couldn’t take the tenure stress. That about sums it up.

It is a very good post that spells out several important points that should be addressed including:

Many people have noted that it’s getting harder to get null results published, and that it’s very difficult to get “credit’ for having done good science if you produce a null result… even though such things really should be the bread and butter of what scientists do, if we really believe all the things we say all the time about how science works, and about how the process of science is an honest, open, and objective process.

Related: Research Career in Industry or AcademiaThe World’s Best Research UniversitiesSo, You Want to be an Astrophysicist?

S&P 500 CEOs – Again Engineering Graduates Lead

2006 Data from Spencer Stuart on S&P 500 CEO (pdf document) shows once again more have bachelors degrees in engineering than any other field.

Field
   
% of CEOs
Engineering 23%
Economics 13%
Business Administration 12%
Liberal Arts 8%
Accounting 8%
No degree or no data 3%

This data only shows the data for 65% of CEOs, I would like to see the rest of the data but it is not provide in this report. 41% of S&P CEOs have MBAs. 27% have other advanced degrees.

Related: Top degree for S&P 500 CEOs? Engineering (2005 study)Science and Engineering Degrees lead to Career SuccessUSA Engineering JobsCurious Cat Management Improvement Blog

A Career in Computer Programming

Why a Career in Computer Programming Doesn’t Suck (A Response)

Programmers need to be lifelong learners. I’m not sure what else to tell you. Lots of people change their professions. It’s not too late for you. Alternatively, you could find a job using a stable technology that you enjoy. Maybe you should find somewhere that will let you use C or C++, both of which are unlikely to disappear anytime soon.

To the readers, pick a field that’s compatible with your own nature. You’ll be much happier. If you find that you’ve chosen the wrong field, change it. It’s just a job. Find something you actually enjoy, even if it means a massive career change. It’s better to be poorly-paid and happy than highly-paid and miserable.

Related: Hiring Software DevelopersWant to be a Computer Game Programmer?Engineering Graduates Get Top Salary Offers (CS is close)

Women Working in Science

Progress Over the Long Term

The commission found that women have doubled their share of bachelor’s degrees in science and engineering over the last four decades. In 1966, they earned one quarter (24.8 percent) of bachelor’s degrees in those fields, while in 2004, they earned half (50.4 percent). Over the same time span, women also gained a dramatically greater percentage of master’s degrees – 13.3 percent in 1966 versus 43.6 percent in 2004. At the doctorate level, the increase was especially noteworthy – 8 percent in 1966 compared to 37.4 percent in 2004.

Proportion of Females in the following fields, from the article:
Psychologists 67.3%
Biological Scientists 48.7%
Computer Programmers 26.0%
Chemical Engineers 14.3%
Mechanical Engineers 5.8%

Related: Diversity in Science and EngineeringGirls in Science and Engineering

So, You Want to be an Astrophysicist?

Dynamics of Cats (good name don’t you think) has an interesting series of posts: So, you want to be an astrophysicist? The latest is: Part 2.5 – grad school by Steinn Sigurðsson:

Think very seriously about whether you want to do theory, observation, data analysis or instrumentation.
You may end up doing things you never imagined out of necessity (like theorists go take observations, cause if they don’t no one else will; or observers running simulations, or building the instrument they need to do the observations etc etc).

Finally: READ!!! Pro-actively.
Check arXiv regularly and thoroughly. Read the papers relevant to you and anything else that looks interesting.
Read the references! They are there for a reason. Read the citations – if a paper is interesting, papers which cite it are also likely to be interesting. Use the ADS “C” option liberally and look through it quickly. If in doubt ask you advisor, or just read it anyway.

Next, the slightly tricky issue of what we actually “do”, research wise type of thingy. Might take a while…

arXiv.org is a (even the) great open access article resource. “Open access to 400,419 e-prints in Physics, Mathematics, Computer Science and Quantitative Biology.”