Tag Archives: China

Ranking Universities Worldwide

The Webometrics Ranking of World Universities provides another estimate of the top universities. The methodology is far ideal however I still find it interesting. The various attempts to rank schools can provide a general idea of impact of various institutions (though the measures are fairly crude). Still a sensible picture (especially at the country level) can emerge. And the various rankings should be a able to track shifts in the most influential institutions and relative country strength over time. How quickly those rankings track changes will vary depending on the measures used. I would imagine most will lag the “real” changes as it is easy to imagine many measures that would lag. Still, as I have said before, I expect the USA will lose in relative ranking compared to China, India, Japan, Singapore, Mexico…

The ranking methodology used here weighed rankings in: Jiao Tong academic rankings, Essential Science Indicators, Google Scholar, Alexa (a measure of web site visits to universities) and The Times Higher World University Rankings.

Country representation of the top universities (number of top schools in each country):

location Webometrics
Top 100
Jiao Tong
Top 101
% of World
Population
% of World GDP*
USA 53 54   4.6%   30.4%
Germany 10   5  1.3   6.3
Canada   8   4  0.5   2.5
United Kingdom   6 10  0.9   5.0
Australia   3   2  0.3   1.6
Japan   1   6 2.0 10.3
The rest of Europe 16 13
Brazil   1   0   2.8   1.8
Mexico   1   0   1.6   1.7
Israel   0   1   0.1   0.3

* IMF, World Economic Outlook Database, September 2006 (2005 data)
Continue reading

Asia: Rising Stars of Science and Engineering

Great report – The Atlas of Ideas: How Asian innovation can benefit us all by Charles Leadbeater and James Wilsdon:

Each country will develop differently. In South Korea strong government support has created a world-class information infrastructure.

China is mobilising massive resources for innovation through ambitious long-term plans, funded by rapid economic growth. Beijing’s university district produces as many engineers as all of western Europe. China is developing world-class universities and attracting multinational innovation centres.

India’s elite, trained at the Indian Institutes of Technology, are second to none. New institutions like the National Science and Engineering Foundation could energise a disjointed innovation system. Yet India’s innovation elite may face a rural backlash. Its infrastructure is in poor repair and cities like Bengalooru are congested. Even the much-vaunted IITs do not, unlike their US counterparts, animate innovation clusters.
Percentage of world share of scientific publications

Year China France Germany Japan Korea UK US EU-15
1995 2.05 6.09 7.62 8.65 0.79 8.88 33.54 34.36
1998 2.90 6.48 8.82 9.42 1.41 9.08 31.63 36.85
2001 4.30 6.33 8.68 9.52 2.01 8.90 31.01 36.55
2004 6.52 5.84 8.14 8.84 2.70 8.33 30.48 35.18

Excellent reading, the report is full of useful information I have not been able to obsorb yet.
Related: Diplomacy and Science ResearchThe World’s Best Research UniversitiesEngineering the Future EconomyWorldwide Science and Engineering Doctoral Degree DataUSA Under-counting Engineering GraduatesIncreasing American Fellowship Support for Scientists and Engineers
Continue reading

Diplomacy and Science Research

Today more and more locations are becoming viable for world class research and development. Today the following have significant ability: USA, Europe (many countries), Japan, Canada, China, Brazil, Singapore, Israel, India, Korea and Australia (I am sure I have missed some this is just what come to mind as I type this post) and many more are moving in that direction.

The continued increase of viable locations for significant amounts of cutting edge research and development has huge consequences, in many areas. If paths to research and development are blocked in one location (by law, regulation, choice, lack of capital, threat of significant damage to the career of those who would choose such a course…) other locations will step in. In some ways this will be good (see below for an explanation of why this might be so). Promising new ideas will not be stifled due to one roadblock.

But risks of problems will also increase. For example, there are plenty of reasons to want to go carefully in the way of genetically engineered crops. But those seeking a more conservative approach are going to be challenged: countries that are acting conservatively will see other countries jump in, I believe. And even if this didn’t happen significantly in the area of genetically engineered crops, I still believe it will create challenges. The ability to go elsewhere will make those seeking to put constraints in place in a more difficult position than 50 years ago when the options were much more limited (It might be possible to stop significant research just by getting a handful of countries to agree).

Debates of what restrictions to put on science and technology research and development will be a continuing and increasing area of conflict. And the solutions will not be easy. Hopefully we will develop a system of diplomacy that works, but that is much easier said than done. And the United States will have to learn they do not have the power to dictate terms to others. This won’t be an easy thing to accept for many in America. The USA will still have a great deal of influence, due mainly to economic power but that influence is only the ability to influence others and that ability will decline if diplomacy is not improved. Diplomacy may not seem to be a science and engineering area but it is going to be increasingly be a major factor in the progress of science and engineering. Continue reading

The World’s Best Research Universities

Shanghai’s Jiao Tong University produces a ranking of the top universities annually (since 2003). The methodology used focuses on research (publications) and faculty quality (Fields and Nobel awards and citations). While this seems a very simplistic ranking it still provides some interesting data: highlights from the 2006 rankings of Top 500 Universities worldwide include:

Country representation in the top schools:

subscribe to Curious Cat Engineering Blog

location Top 101 % of World
Population
% of World GDP % of top 500
USA 54   4.6%   28.4%  33.4%
United Kingdom 10  0.9   5.1 8.6
Japan   6 2.0 11.2 6.4
Canada   4  0.5   2.4 8.0
The rest of Europe 18 4.4
Australia   2   0.3   1.5 3.2
Israel   1   0.1   0.3 1.4

Update: see our post on 2007 best research universities results

Top 10 schools:

  • Harvard University
  • Cambridge University
  • Stanford University
  • University of California at Berkeley
  • Massachusetts Institute of Technology(MIT)
  • California Institute of Technology
  • Columbia University
  • Princeton University
  • University Chicago
  • Oxford University

Continue reading

China Builds a Better Internet

China Builds a Better Internet (site broke the link so I removed it)

China is looking to become a scientific leader, with projects like China’s Next Generation Internet, to strengthen their economy by creating

its own scientific and technological breakthroughs—using a new and improved version of today’s dominant innovation platform, the Internet. “CNGI is the culmination of this revolutionary plan” to turn China into the world’s innovation capital, says Wu Hequan, vice president of the Chinese Academy of Engineering.

The United States’ reluctance to invest in IPv6 makes it more likely that China will be in a position to gain the first-mover advantage it seeks. A draft version of a January 2006 report by the Department of Commerce on IPv6 contained a section on competitiveness that highlighted several threats to U.S. Internet leadership, including a further shift of high-tech R&D and product innovation eastward and less available investment capital because of the higher costs of maintaining IPv4 networks. What remains to be seen is whether China can develop the services that take advantage of the next-generation Internet. But China’s researchers are already working on it. At the IPv6 Global Summit in April, China’s major telecommunications and Internet companies got up on stage one by one and told the audience that they have research facilities dedicated to developing these services.

IPv6 is coming, in fact it is already here, though in a limited way. The work started in 1994 when the IPv6 working group was established and proposed standard adopted by the Internet Engineering Steering Group.

IEEE-USA chief calls for IPv6 adoption:

Adoption of a next-generation Internet Protocol by China, Japan and South Korea and other Asian countries should raised questions about U.S. innovation policy, the president of IEEE-USA told an IPv6 conference here Friday

China challenges dominance of USA, Europe and Japan

China challenges dominance of USA, Europe and Japan in scientific research according to UNESCO Science Report 2005

The report says that “the most remarkable trend is to be found in Asia, where gross expenditure on R&D has grown from a world share of 27.9% in 1997 to 31.5% in 2002”.

This hardly seems impressive compared to the growth of Google say. However the amounts of money for global R&D are huge and so changes as less dramatic than other areas. Still this is significant and seems likely to continue to move in this direction.
Continue reading

Wind Power Technology Breakthrough

China Makes Huge Breakthrough in Wind Power Technology by Zijun Li:

Chinese developers unveiled the world’s first full-permanent magnetic levitation (Maglev) wind power generator at the Wind Power Asia Exhibition 2006 held June 28 in Beijing, according to Xinhua News.

The Maglev generator is expected to boost wind energy generating capacity by as much as 20 percent over traditional wind turbines. This would effectively cut the operational expenses of wind farms by up to half, keeping the overall cost of wind power under 0.4 yuan (5 cents US), according to Guokun Li, the chief scientific developer of the new technology. Further, the Maglev is able to utilize winds with starting speeds as low as 1.5 meters per second (m/s), and cut-in speeds of 3 m/s, the chief of Zhongke Energy was quoted as saying at the exhibition. When compared with the operational hours of existing wind turbines, the new technology will add an additional 1,000 hours of operation annually to wind power plants in areas with an average wind speed of 3 m/s.

China and USA Basic Science Research

US$425 million to boost Chinese innovation by Fu Jing:

The National Natural Science Foundation of China will provide 3.4 billion yuan (US$425 million) in funding for basic science, it announced last week (25 May).

“The boost has shown the government’s determination for China to become an innovative country by 2020,” said the foundation’s vice-president Zhu Zuoyan. He added that the foundation’s research funding is set to grow by about 20 per cent a year for the next five years.

According to government plans, China’s total investment in science and technology should reach 2.5 per cent of its gross domestic product by 2020 — a share similar to that spent by industrialised nations.
By that time, China aims to be spending about US$112 billion annually on research and development (see China announces 58-point plan to boost science).

U.S. National Science Foundation Celebrates Opening of Beijing Office

The National Science Foundation is a U.S. government agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $5.58 billion.

According to the NSF report, Science and Engineering Indicators 2006, China ranked fourth in the world in the year 2000 in research and development, with $48.9 billion in expenditures. Two years later, the country ranked third, behind the United States and Japan, spending an estimated $72.0 billion on R&D.

“It is important for the U.S. scientific community, especially young researchers, to be aware of and consider collaborating with colleagues in China in this environment,” said Beijing office Director William Chang.

The NSF Beijing Office is NSF’s third foreign office. NSF also maintains research offices in Paris and Tokyo.

House Testimony on Engineering Education

Testimony of Vivek Wadhwa to the U.S. House of Representatives Committee on Education and the Workforce,
May 16, 2006.

Vivek Wadhwa has continued the work published in the Duke study: Framing the Engineering Outsourcing Debate. In the testimony he provides an update on the data provided in the report.

Contrary to the popular view that India and China have an abundance of engineers, recent studies show that both countries may actually face severe shortages of dynamic engineers. The vast majority of graduates from these counties have the qualities of transactional engineers.

Differentiating between dynamic and transactional engineers is a start, but we also need to look at specific fields of engineering where the U.S can maintain a distinct advantage. Professor Myers lists specializations such as systems biology and personalized medicine, genomics, proteomics, metabolomics that he believes will give the U.S a long term advantage.

Our education system gives our students broad exposure to many different fields of study. Our engineers learn biology and art, they gain significant practical experience and learn to innovate and become entrepreneurs. Few Indian and Chinese universities provide such advantages to their students.

The dynamic and transactional differences were mentioned in his business week article: Filling the Engineering Gap.

The conclusion he presents seems wise to me.

The numbers that are at the center of the debate on US engineering competitiveness are not accurate. The US may need to graduate more of certain types of engineers, but we have not determined what we need. By simply reacting to the numbers, we may actually reduce our competitiveness. Let’s better understand the problem before we debate the remedy.

Science and Engineering Jobs

Alarm as white-collar jobs vanish overseas (link broken so I removed it), Australian Financial Review:

The council’s draft report, a copy of which was obtained by the Australian Financial Review, says Australia needs to respond by investing in education and research and development, and by linking up with developing knowledge sectors in China and India.

There has been a steady progression up the value scale in work sent to low-cost countries – from manufacturing to data processing, call centres and computer software.

Now there is evidence that China and India are competing for high-level jobs in financial services, industrial design, architecture, research and development, engineering, medicine and even management areas such as human resources and business consulting.

Every country realizes the value to their economy of jobs in science, engineering and technology. Countries are taking steps to create a environment that will attract those jobs. Countries that do this less effectively will suffer.

Previous posts on the topic of economics, science and engineering