Tag Archives: commentary

Cardiac Cath Lab: Innovation on Site

photo of Cath LabPhoto of John Cooke at the Cardiac Catheterisation Labs at St. Thomas’ hospital in London

I manage several blogs on several topics that are related. Often blog posts stay firmly in the domain of one blog of the other. Occasionally the topic blurs the lines between the various blogs (which I like). This post ties directly to my Curious Cat Management Improvement Blog. The management principles I believe in are very similar to engineering principles (no surprise given this blog). And actual observation in situ is important – to understand fully the situation and what would be helpful. Management relying on reports instead of seeing things in action results in many poor decisions. And engineers doing so also results in poor decisions.

Getting to Gemba – a day in the Cardiac Cath Lab by John Cooke

I firmly believe that it is impossible to innovate effectively without a clear understanding of the context and usage of your final innovation. Ideally, I like to “go to gemba“, otherwise known as the place where the problem exists, so I can dig for tacit knowledge and observe unconscious behaviours.

I didn’t disgrace myself and I’ve been invited back for another day or so. What did I learn that I didn’t know before? The key things I learnt were:

  • the guide wire isn’t just a means of steering the catheter into place as I thought. It is a functional tool in it’s own right
  • Feel is really critical to the cardiologist
  • There is a huge benefit in speeding up procedures in terms of patient wellbeing and lab efficiency
  • Current catheter systems lack the level of detection capability and controllability needed for some more complex PCIs (Percutaneous Cardiac Interventions)

The whole experience reminded me that in terms of innovation getting to gemba is critical. When was the last time you saw your products in use up-close and personal?

Related: Jeff Bezos Spends a Week Working in Amazon’s Kentucky Distribution CenterToyota Engineering Development ProcessMarissa Mayer on Innovation at GoogleBe Careful What You MeasureS&P 500 CEOs are Often Engineering GraduatesExperiment Quickly and Often

USA Losing Scientists and Engineers Educated in the USA

The USA continues to lose ground, in retaining the relative science and engineering strength it has retained for the last 50 plus years. As I have said before this trend is nearly inevitable – the challenge for the USA is to reduce the speed of their decline in relative position.

A new open access report, Losing the World’s Best and Brightest, explores the minds of current foreign science and engineering students that are studying in the USA. This is another in the list of reports on similar topics by Vivek Wadhwa and Richard Freeman. And again they point out the long term economic losses the USA is setting up by failing to retain the talent trained at our universities. It is a problem for the USA and a great benefit for countries like India and China.

“Foreign students receive nearly 60% of all engineering doctorates and more than half of all mathematics, computer sciences, physics and economics doctorates awarded in the United States. These foreign nationals end up making jobs, not taking jobs,” said Wadhwa. “They bring insights into growing global markets and fresh ideas. Research has shown that they even end up boosting innovation by U.S. inventors. Losing them is an economic tragedy.”

According to the study’s findings, very few foreign students would like to stay in the United States permanently—only 6% of Indian, 10 percent of Chinese and 15% of Europeans. And fewer foreign students than the historical norm expressed interest in staying in the United States after they graduate. Only 58% of Indian, 54% of Chinese and 40% of European students wish to stay for several years after graduation. Previous National Science Foundation research has shown 68% of foreigners who received science and engineering doctorates stayed for extended periods of time, including 73% of those who studied computer science. The five-year minimum stay rate was 92% for Chinese students and 85% for Indian students.

The vast majority of foreign student and 85% of Indians and Chinese and 72% of Europeans are concerned about obtaining work visas. 74% of Indians, 76% of Chinese, and 58% of Europeans are also worried about obtaining jobs in their fields. Students appear to be less concerned about getting permanent-resident visas than they are about short-term jobs. Only 38% of Indian students, 55% of Chinese, and 53% of Europeans expressed concerns about obtaining permanent residency in the USA.

On the tonight show yesterday, President Obama said

we need young people, instead of — a smart kid coming out of school, instead of wanting to be an investment banker, we need them to decide they want to be an engineer, they want to be a scientist, they want to be a doctor or a teacher.

And if we’re rewarding those kinds of things that actually contribute to making things and making people’s lives better, that’s going to put our economy on solid footing. We won’t have this kind of bubble-and-bust economy that we’ve gotten so caught up in for the last several years.

Eric Schmidt, Google CEO, recently expressed his frustration with the policies discouraging science and engineering graduates staying in the USA after they complete their education.

That is a brilliant [actually not brilliant at all] strategy take the best people hire them in American universities and then kick them out” It happens. “Its shocking.” It happens. “I know we are fighting against it.” “We America remain, by far the place of choice for education, particularly higher education.”

Related: Invest in Science for a Strong EconomyScience, Engineering and the Future of the American EconomyUSA Under-counting Engineering GraduatesLosing scientists and engineers will reduce economic performance of the USADiplomacy and Science Research

Mental Pick-Me-Ups: The Coming Boom

I am not a fan of lifestyle drugs. People seem to forget that drugs have side effects that are quite large. Being surprised when a drug has adverse consequences shows a failure to understand the risks. You should assume adverse effects and take them only when that risk is outweighed by significant tangible benefits. A Boom in Memory-Enhancing Drugs?

A whole generation has come of age using attention-deficit drugs such as Adderall and Ritalin, a category valued at nearly $4.7 billion in 2007. A lot of teenagers have used them casually as study aids, often buying them on the Internet. And now, overworked professionals are seeing the appeal.

And when they almost certainly have significant adverse effects on many people, then people will get upset. Granted the drug companies pushing sales for negligible benefits do deserve condemnation. However, the larger problem is people that choose to risk their health as though they don’t have the ability to learn and can just ignore evidence of risks.

Related: Over-reliance on Prescription Drugs to Aid Children’s Sleep?Marketing DrugsNew Antipsychotics Same Old Bad ResultsHow Prozac Sent Science Inquiry Off Track

Study on Citation of Open Access Papers v. Closed Access Papers

Open Access to Scientific Papers May Not Guarantee Wide Dissemination

To test this theory, James A. Evans, an assistant professor of sociology at the University of Chicago, and Jacob Reimer, a student of neurobiology also at the University of Chicago, analyzed millions of articles available online, including those from open source publications and those that required payment to access.

The results were surprising. On average, when a given publication was made available online after being in print for a year, being published in an open source format increased the use of that article by about 8 percent. When articles are made available online in a commercial format a year after publication, however, usage increases by about 12 percent.

“Across the scientific community,” Evans said in an interview, “it turns out that open access does have a positive impact on the attention that’s given to the journal articles, but it’s a small impact.”

Yet Evans and Reimer’s research also points to one very positive impact of the open source movement that is sometimes overlooked in the debate about scholarly publications. Researchers in the developing world, where research funding and libraries are not as robust as they are in wealthier countries, were far more likely to read and cite open source articles.

The University of Chicago team concludes that outside the developed world, the open source movement “widens the global circle of those who can participate in science and benefit from it.”

So while some scientists and scholars may chose to pay for scientific publications even when free publications are available, their colleagues in other parts of the world may find that going with open source works is the only choice they have.

I remain a strong advocate for open science. The out of date model of publishing research in closed journals does not make sense. Especially not for any government funded research or any research supported by foundations, universities or others that aim to promote science.

The quote above and the interview webcast also provide unclear data on what the actual impact is (on how often a paper is cited in other papers). Maybe the article would be clearer but I can’t tell because it is closed access. This link has some worthwhile comments: Generalizing the OA impact advantage.

Related: Toward a More Open Scientific CultureOpen Access Journal WarsDinosaurs Fighting Against Open Science

Scientists Say Biotechnology Seed Companies Prevent Research

Crop Scientists Say Biotechnology Seed Companies Are Thwarting Research

Biotechnology companies are keeping university scientists from fully researching the effectiveness and environmental impact of the industry’s genetically modified crops, according to an unusual complaint issued by a group of those scientists.

The researchers, 26 corn-insect specialists, withheld their names because they feared being cut off from research by the companies. But several of them agreed in interviews to have their names used.

The problem, the scientists say, is that farmers and other buyers of genetically engineered seeds have to sign an agreement meant to ensure that growers honor company patent rights and environmental regulations. But the agreements also prohibit growing the crops for research purposes.

So while university scientists can freely buy pesticides or conventional seeds for their research, they cannot do that with genetically engineered seeds. Instead, they must seek permission from the seed companies. And sometimes that permission is denied or the company insists on reviewing any findings before they can be published, they say.

Such agreements have long been a problem, the scientists said, but they are going public now because frustration has been building.

This is not acceptable. Regulators need to put safety above politically connected powerful groups. The bigger problem is we keep electing people more interested in who gives than money than the public interest. But part of the dynamic is embarrassing those that subvert the public good to reward those providing the politicians money. By shining light on what is being done the abuses are often reduced a bit.

Related: The A to Z Guide to Political Interference in ScienceProtecting the Food SupplyUSDA’s failure to protect the food supplyEthanol: Science Based Solution or Special Interest Welfare

Correlation is Not Causation: “Fat is Catching” Theory Exposed

“Fat is catching” theory exposed

Their study was reported to have shown that you can “catch” obesity from having fat friends and that obesity is so contagious, it can be spread long-distance by email and instant messaging. Even healthcare professionals, who didn’t understand the etiology of true obesity or how statistics can be misused, failed to detect the implausibility of “second-hand obesity.” In fact, some doctors became so enamored with the new “science of networking” they believed it should be a new medical specialty: network medicine.

Jason M. Fletcher, Ph.D., assistant professor at the Yale School of Public Health in New Haven, Connecticut, along with Boston economist, Ethan Cohen-Cole, Ph.D., designed an ingenious study. They selected conditions that no one would seriously believe were spread by social networking and online friendships: height, headaches and acne. They then applied the same standard statistical methods used in Christakis and Fowler’s social networking research to “find” that acne, height and headaches have the same “social network effect.”

As they explained, patterns of association among people can lead to correlations in health conditions between friends that are not caused by direct social network effects at all.

There is a need for caution when attributing causality to correlations in health outcomes between friends using non-experimental data. Confounding is only one of many empirical challenges to estimating social network effects.

Excellent reminder of the risks of analyzing data for correlations. We continue to, far to often, fail to interpret data properly. Both authors of the study, received PhD’s from the University of Wisconsin-Madison which strengthens my belief that it is teaching students well (just kidding).

Also another example of the scientific inquiry process where scientists challenge the conclusions drawn by other scientists. It is a wonderful system, even if confusing and not the clean idea so many have of how science works.

Related: Correlation is Not CausationSeeing Patterns Where None ExistsStatistics for Experimenters500 Year FloodsPlaying Dice and Children’s NumeracyThe Illusion of UnderstandingAll Models Are Wrong But Some Are UsefulData Doesn’t Lie But People Can Draw Faulty Conclusions from Data

The Year in Bad Science

The Year in Bad Science Ben Goldacre reviews some of the science lowlights of the year.

In a world where rigorous evidence from scientific research languishes unpublicised, the media continued to churn out bogus wacky science stories. Britain’s happiest places were mapped by “scientists”, although the differences were just chance findings; there were innumerable “surveys” from unrepresentative populations; and the right wing press claimed that “Lord Nelson and Captain Cook’s ship logs question climate change theories,” although they did nothing of the sort, as the researchers themselves helpfully explained. We saw how the BBC misrepresented the statistics on parents’ choices about keeping a Down’s Syndrome pregnancy, producing their a publicity avalanche on the back of an incorrect story, and learnt along the way about confounding variables, baseline changes, and more.

In the world of evidence based social policy we saw how the government quietly dropped death as an outcome indicator for their drugs policy, the fascinating inconsistencies in food additive judgment calls, and more. We also watched with delight as right-wing think tank Reform produced a report on the crisis in maths in which they got their maths wrong.

Related: Illusion of Explanatory DepthThe Most Trusted Sources in ScienceSeeing Patterns Where None ExistsBigger Impact: 15 to 18 mpg or 50 to 100 mpg?Poor Reporting and Unfounded Implications

Appropriate Technology: Self Adjusting Glasses

Self Adjusting Glasses for 1 billion of the world’s poorest see better

What if it were possible, he thought, to make a pair of glasses which, instead of requiring an optician, could be “tuned” by the wearer to correct his or her own vision? Might it be possible to bring affordable spectacles to millions who would never otherwise have them?

More than two decades after posing that question, Josh Silver [a physics professor at Oxford] now feels he has the answer. The British inventor has embarked on a quest that is breathtakingly ambitious, but which he insists is achievable – to offer glasses to a billion of the world’s poorest people by 2020.

Some 30,000 pairs of his spectacles have already been distributed in 15 countries, but to Silver that is very small beer. Within the next year the now-retired professor and his team plan to launch a trial in India which will, they hope, distribute 1 million pairs of glasses. The target, within a few years, is 100 million pairs annually.

Silver has devised a pair of glasses which rely on the principle that the fatter a lens the more powerful it becomes. Inside the device’s tough plastic lenses are two clear circular sacs filled with fluid, each of which is connected to a small syringe attached to either arm of the spectacles.

The wearer adjusts a dial on the syringe to add or reduce amount of fluid in the membrane, thus changing the power of the lens. When the wearer is happy with the strength of each lens the membrane is sealed by twisting a small screw, and the syringes removed. The principle is so simple, the team has discovered, that with very little guidance people are perfectly capable of creating glasses to their own prescription.

Oxford University, at his instigation, has agreed to host a Centre for Vision in the Developing World, which is about to begin working on a World Bank-funded project with scientists from the US, China, Hong Kong and South Africa. “Things are never simple. But I will solve this problem if I can. And I won’t really let people stand in my way.”

Cool. A couple points I would like to make:

1) this professor is making a much bigger difference in the “real world” than most people ever will. The idea that professors are all lost in insignificant “ivory towers” is a very inaccurate view of what really happens.
2) Spending money on this kind of thing seems much more important for the human race than spending trillions to bail out poor moves by bankers, financiers… It sure seems odd that we can’t find a few billion to help out people across the globe that are without basic necessities yet we can find trillions to bail out the actions of few thousand bad actors.

Related: Adaptive EyecareBringing Eye Care to Thousands in IndiaRiver Blindness Worm Develops Resistance to DrugsStrawjet: Invention of the Year (2006)Fixing the World on $2 a DayAppropriate Technology

Online Education in Science, Engineering and Medicine

The National Academies state that they want to develop websites, podcasts, and printed information featuring the topics in science, engineering, and medicine that concern you the most, and that you’d like to understand better. Great. I am very disappointed in how little great material is available now (from them, and others).

Fill out their survey and hope they hire some people that actually understand the web. I must say the survey seems very lame to me.

The internet provides a fantastic platform for those that have an interest in increasing scientific literacy. But there is still very little great material available. There are a few great resources but there should be a great deal more. The National Academies of Science have a particularly stilted web presence – it is as though the web were just a way to distribute pages for people to print out. Though they are very slowly getting a bit better, adding a small amount of podcasts, for example. While hardly innovative, for them, it is a step into the 21st century, at least.

Some of the good material online: Public Library of ScienceScience BlogsEncyclopedia of LifeThe Naked ScientistsBerkeley Course WebcastsBBC Science NewsMIT OpenCourseWare (though it is very lacking in some ways at least they are trying) – TEDMayo ClinicNobel PrizeSciVee

It seems to me universities with huge endowments (MIT, Harvard, Yale, Standford…), government agencies (NSF, National Academies), museums and professional societies should be doing much more to create great online content. I would increase funding in this area by 5 to 10 times what is currently being dedicated right now, and probably much more would be wise. I believe funding this would be most effective way to spend resources of those organizations on what they say they want to support.

Compounding is the Most Powerful Force in the Universe

A talking head with some valuable info. I remember my father (a statistics professor) getting me to understand this as a small child (about 6 years old). The concept of growth and mathematical compounding is an important idea to understand as you think and learn about the world. It also is helpful so you understand that statistics don’t lie but ignorant people can draw false conclusions from limited data.

It is unclear if Einstein really said this but he is often quoted as saying “compounding is the most powerful force in the universe.” Whether he did or not, understanding this simple concept is a critical component of numeracy (literacy with numbers). Also quoted at times as: “Compound interest is the eighth wonder of the world.” My guess is that people just find the concept of compounding amazing and then attribute quotes about it to Einstein.

I strongly encourage you to watch at least the first 2 segments (a total of 15 minutes). And then take some time and think. Take some time to think about compounding in ways to help you internalize the concepts. You can also read his book: The Essential Exponential For the Future of Our Planet by Albert Bartlett.

Related: Playing Dice and Children’s NumeracySaving for Retirement (compound interest)Bigger Impact: 15 to 18 mpg or 50 to 100 mpg?Sexy MathThe Economic Benefits of Math