Tag Archives: cool

Many Great, Free, Online Courses in Science, Engineering and More

The video, above, provides an overview of an online course, Calculus: Single Variable, via coursera from the University of Pennsylvania. This course provides a brisk, entertaining treatment of differential and integral calculus, with an emphasis on conceptual understanding and applications to the engineering, physical, and social sciences.

Robert Ghrist is the Andrea Mitchell University Professor of Mathematics and Electrical & Systems Engineering at the University of Pennsylvania. Coursera offers many courses in all sorts of disciplines including: Introduction to Genetics and Evolution (Duke), Scientific Computing (University of Washington), Principles of Economics for Scientists (California Institute of Technology), Game Theory (Stanford University and The University of British Columbia), A Beginner’s Guide to Irrational Behavior (Dan Ariely, Duke University), The Modern World: Global History since 1760 (University of Virginia), Microeconomics for Managers (University of California, Irvine), Data Analysis (Johns Hopkins University), Fundamentals of Human Nutrition (University of Florida), Algorithms, Part I (Princeton University), The Ancient Greeks (Wesleyan University), Astrobiology and the Search for Extraterrestrial Life (University of Edinburgh) and Epigenetic Control of Gene Expression, (University of Melbourne).

All the classes are free. These courses, and many more, are extremely appealing. I signed up for 2. I would be interested in signing up for much more but I worry about having the time to commit to keeping up with the coursework. I hope the first two go well and I can sign up for more in the future.

Related: Top Online Graduate Engineering Programs in the USAOpen Source Education CurriculaScience and Engineering Education ResourcesExploring Eukaryotic Cells

Continue reading

Make Crosswalks More Visible

Good simple idea. And then executed well – for nighttime at least. Crosswalk lights up when in use giving drivers a more visible clue to stop.

Related: Ministry of Silly WalksKindergarten Students Pedel Their Own Bus to SchoolPassion for Mechanical Engineering Nurtured as a ChildBird Feeder That Automatically Takes Photos When Birds FeedEncouraging Curiosity in Kids

Promoting Innovation in Sierra Leone

Another inspirational kid that shows that the potential for human good is much greater than the talking heads and politicians that litter the TV screen so often.

In the video Kelvin says, “That is my aim: to Promote Innovation in Seira Leone, among young people.” See another video as Kelvin explains his homemade battery.

Support these young engineers in Sierra Leone via innovate Salone.

Related: Inspirational Engineer Build Windmill Using TrashSupporting the Natural Curiosity of KidsWhat Kids can Learn If Given a ChanceI was Interviewed About Encouraging Kids to Pursue Engineering

Science Explained: Cool Video of ATP Synthase, Which Provides Usable Energy to Us

[I replaced the webcast – as so often happen the non-Youtube video embed failed to work as time passed]

This webcast shows animations of ATP synthase structure and the mechanism for synthesizing ATP. Biology is incredibly cool. Too bad they didn’t have stuff like this when I was in school, instead biology was mainly about memorizing boring lists of stuff.

ATP (adenosine tri-phosphate) transports chemical energy within cells. When one of the phosphates is released by ATP energy is given off (and ATP becomes ADP (adenosine di-phosphate) + Pi (inorganic phosphate). And then the synthase structure can then turn it back into ATP to be used again.

The human body, which on average contains only 250 grams of ATP, turns over its own body weight equivalent in ATP each day.

Related: ATP synthase lecture notes University of IllinoisWebcast on the makeup and function of eukaryotic cellsScience Explained: PhotosynthesisVideo showing malaria breaking into cell

Pay as You Go Solar in India

Farmers Foil Utilities Using Cell Phones to Access Solar

In October, Bangalore-based Simpa Networks Inc. installed a solar panel on Anand’s whitewashed adobe house along with a small metal box in his living room to monitor electricity usage. The 25-year-old rice farmer, who goes by one name, purchases energy credits to unlock the system via his mobile phone on a pay-as-you-go model.

When his balance runs low, Anand pays 50 rupees ($1) — money he would have otherwise spent on kerosene. Then he receives a text message with a code to punch into the box, giving him about another week of electric light.
When he pays off the full cost of the system in about three years, it will be unlocked and he will get free power.

Across India and Africa, startups and mobile phone companies are developing so-called microgrids, in which stand- alone generators power clusters of homes and businesses in places where electric utilities have never operated.

Very cool. Worldwide, approximately 1.6 billion people have no access to electricity and another 1 billion have extremely unreliable access. The poorest spending up to 30% of their income on inefficient and expensive means of providing light and accessing electricity. Solutions like this, finding engineering solutions for basic needs that are market based, are great.

That the poor end up owning their solar system after just 3 years is great.

Creating great benefit to society with the smart adoption of technology and sustainable economics is something I love.

Related: Solar Power Market Solutions For Hundreds of Millions Without ElectricityAppropriate Technology: Solar Hot Water in Poor Cairo NeighborhoodsEngineering a Better World: Bike Corn-ShellerWater Pump Merry-go-Round

Bacteriophages Enter Bacteria Using an Iron Tipped Spike

Bacteria-Killing Viruses Wield an Iron Spike

Forget needles in haystacks. Try finding the tip of a needle in a virus. Scientists have long known that a group of viruses called bacteriophages have a knack for infiltrating bacteria and that some begin their attack with a protein spike. But the tip of this spike is so small that no one knew what it was made of or exactly how it worked. Now a team of researchers has found a single iron atom at the head of the spike, a discovery that suggests phages enter bacteria in a different way than surmised.

Wherever there are bacteria you will find bacteriophages; digestive tracts, contaminated water, and feces are usually a good start. These viruses begin their dirty work by drilling into the outer membrane of bacteria. Once completely through all of a bug’s defenses, the phages inject their DNA, which essentially turns the bacterium into phage-producing factories. Eventually, the microbes become filled with so many viruses that they burst, releasing a new horde of phages into the environment.

Bacteriophages are amazing. It is so interesting to learn about amazingly creative solutions that have evolved over time. Real-life science is not easy to match with fiction that springs from our imaginations.

Related: Bacteriophages: The Most Common Life-Like Form on EarthViruses Eating BacteriaWhere Bacteria Get Their Genes

How Bee Hives Make Decisions

The Secret Life of Bees by Carl Zimmer

The decision-making power of honeybees is a prime example of what scientists call swarm intelligence. Clouds of locusts, schools of fish, flocks of birds and colonies of termites display it as well. And in the field of swarm intelligence, Seeley is a towering figure. For 40 years he has come up with experiments that have allowed him to decipher the rules honeybees use for their collective decision-making. “No one has reached the level of experimentation and ingenuity of Tom Seeley,” says Edward O. Wilson of Harvard University.

Enthusiasm translates into attention. An enthusiastic scout will inspire more bees to go check out her site. And when the second-wave scouts return, they persuade more scouts to investigate the better site.

The second principle is flexibility. Once a scout finds a site, she travels back and forth from site to hive. Each time she returns, she dances to win over other scouts. But the number of dance repetitions declines, until she stops dancing altogether. Seeley and his colleagues found that honeybees that visit good sites keep dancing for more trips than honeybees from mediocre ones.

This decaying dance allows a swarm to avoid getting stuck in a bad decision. Even when a mediocre site has attracted a lot of scouts, a single scout returning from a better one can cause the hive to change its collective mind.

“Bees are to hives as neurons are to brains,” says Jeffrey Schall, a neuroscientist at Vanderbilt University. Neurons use some of the same tricks honeybees use to come to decisions. A single visual neuron is like a single scout. It reports about a tiny patch of what we see, just as a scout dances for a single site. Different neurons may give us conflicting ideas about what we’re actually seeing, but we have to quickly choose between the alternatives. That red blob seen from the corner of your eye may be a stop sign, or it may be a car barreling down the street.

To make the right choice, our neurons hold a competition, and different coalitions recruit more neurons to their interpretation of reality, much as scouts recruit more bees

Very cool stuff.

Related: Honeybees Warn Others of RisksWasps Used to Detect ExplosivesStudy of the Colony Collapse Disorder Continues as Bee Colonies Continue to Disappear

NASA Biocapsules Deliver Medical Interventions Based Upon What They Detect in the Body

Very cool innovation from NASA. The biocapsule monitors the environment (the body it is in) and responds with medical help. Basically it is acting very much like your body, which does exactly that: monitors and then responds based on what is found.

The Miraculous NASA Breakthrough That Could Save Millions of Lives

The Biocapsules aren’t one-shot deals. Each capsule could be capable of delivering many metred doses over a period of years. There is no “shelf-life” to the Biocapsules. They are extremely resilient, and there is currently no known enzyme that can break down their nanostructures. And because the nanostructures are inert, they are extremely well-tolerated by the body. The capsules’ porous natures allow medication to pass through their walls, but the nanostructures are strong enough to keep the cells in one place. Once all of the cells are expended, the Biocapsule stays in the body, stable and unnoticed, until it is eventually removed by a doctor back on Earth.

Dr. Loftus [NASA] thinks we could realistically see wildspread usage on Earth within 10 to 15 years.

The cells don’t get released from the capsule. The cells inside the capsule secrete therapeutic molecules (proteins, peptides), and these agents exit the capsule by diffusion across the capsule wall.

NASA plans to use the biocapsules in space, but they also have very promising uses on earth. They can monitor a diabetes patient and if insulin is needed, deliver it. No need for the person to remember, or give themselves a shot of insulin. The biocapsule act just like out bodies do, responding to needs without us consciously having to think about it. They can also be used to provide high dose chemotherapy directly to the tumor site (thus decreasing the side effects and increasing the dosage delivered to the target location. Biocapsules could also respond to severe allergic reaction and deliver epinephrine (which many people know have to carry with them to try and survive an attack).

It would be great if this were to have widespread use 15 years from now. Sadly, these innovations tend to take far longer to get into productive use than we would hope. But not always, so here is hoping this innovation from NASA gets into ourselves soon.

Related: Using Bacteria to Carry Nanoparticles Into CellsNanoparticles With Scorpion Venom Slow Cancer SpreadSelf-Assembling Cubes Could Deliver MedicineNanoengineers Use Tiny Diamonds for Drug Delivery

Webcast of a T-cell Killing a Cancerous Cell

Very cool. Very good job by University of Cambridge to make this kind of material available openly online. I find this kind of video amazing. Every day you body has this going on all day long. How amazing.

This is what it looks like when cancer gets smacked down by a T cell

This was shot by University of Cambridge medical researcher Alex Ritter, and is 92 times faster than real time.

Cells of the immune system protect the body against pathogens. If cells in our bodies are infected by viruses, or become cancerous, then killer cells of the immune system identify and destroy the affected cells. Cytotoxic T cells are very precise and efficient killers. They are able to destroy infected or cancerous cells, without destroying healthy cells surrounding them.

Related: Using Bacteria to Carry Nanoparticles Into CellsHow Cells AgeVideo showing malaria breaking into cellSynthetic Biologists Design a Gene that Forces Cancer Cells to Commit Suicide

Cool Robot Locomotion: Transforms from Wheeled to Walking For Stairs and Rough Terrain

This is a very cool engineering solution. Wheeled locomotion is very efficient on the right terrain. This transformation lets the robot switch to climb stairs and handle rough terrain very nicely. A team of mechanical engineers at National Taiwan University built this energy-efficient leg-wheel hybrid mobile robot. From their description:

Compared to most hybrid platforms, which have separate mechanisms and actuators for wheels and legs, our leg-wheel hybrid mobile robot, Quattroped, uses a “transformation mechanism” that deforms a specific portion of the body to act as a wheel or a leg. From a geometrical point of view, a wheel usually has a circular rim and a rotational axis located at the center of the rim. The rim contacts the ground and the rotational axis connects to the robot body at a point hereafter referred to as the “hip joint.” In general, with wheeled locomotion on flat ground, the wheel rotates continuously and the ground-contact point of the wheel is located directly below the hip joint with a fixed distance. In contrast, in legged locomotion the leg moves in a periodic manner and there is no specific geometrical configuration between the hip joint and the ground-contact point; thereby, the relative position of the legs varies frequently and periodically during locomotion.

Based on this observation, shifting the hip joint out of the center of the circular rim and changing the continuous rotation motion to other motion patterns implies the locomotion switches from wheeled mode to legged mode. This motivated us to design a mechanism that directly controls the relative position of the circular rim with respect to the hip joint so it can generate both wheeled and legged motions. Because the circular rim is a 2-dimensional object, the most straightforward method to achieve this goal is to add a second degree of freedom (DOF) that can adjust the relative position of the hip joint to the center of the circular rim along the radial direction. The motions of the two DOFs are also orthogonal to each other. In addition, the same set of actuation power can be efficiently used in both wheeled and legged modes.

Related: Big Dog, The Robotic Dog (2008)Robots That Start as Babies Master Walking Faster Than Those That Start as AdultsSelf Re-assembling RobotsSoft Morphing Robot (soft tissue)