Tag Archives: Economics

Promoting Innovation in Sierra Leone

Another inspirational kid that shows that the potential for human good is much greater than the talking heads and politicians that litter the TV screen so often.

In the video Kelvin says, “That is my aim: to Promote Innovation in Seira Leone, among young people.” See another video as Kelvin explains his homemade battery.

Support these young engineers in Sierra Leone via innovate Salone.

Related: Inspirational Engineer Build Windmill Using TrashSupporting the Natural Curiosity of KidsWhat Kids can Learn If Given a ChanceI was Interviewed About Encouraging Kids to Pursue Engineering

Solar Powered Water Jug to Purify Drinking Water

Deepika Kurup, a 14-year-old New York student, won the Discovery Education 3M Young Scientist Challenge for her invention of a solar-powered water jug that changes dirty water into purified drinking water. She won the top prize of $25,000.

During “the 5 minutes of my presentation 15 children have died from lack of clean drinking water.”

I am thankful we have kids like this to create solutions for us that will make the world a better place. We rely on hundreds of thousands of such people to use science and engineering methods to benefit society.

Related: Strawjet: Invention of the YearCheap Drinking Water From SeawaterWater and Electricity for AllThanksgiving, Appropriately (power of capitalism and people to provide long term increases in standards of living)

Add Over-Fishing to the Huge Government Debt as Examples of How We Are Consuming Beyond Our Means

Fish are hidden under the water so the unsustainable harvesting isn’t quite as obvious as the unsustainable government debt but they both are a result of us living beyond our sustainable production. You can live well by consuming past wealth and condemning your decedents to do without. That is the way we continue to live. Over-fishing a century ago was not as obviously dangerous as it is today. But we have witnessed many instances of overfishing devastating the fishing economy (when the fishing is unsustainable the inevitable result is collapse and elimination of the vast majority of the food and income that previous generations enjoyed).

The normal pattern has been to turn to more aggressive fishing methods and new technology to try and collect fish as over-fishing devastates yields. This, of course, further devastates the state of the resources and makes it so recovery will take much much longer (decades – or more).

New research shows the existing problems and the potential if we apply science and planning to manage fisheries effectively.

Using new methods to estimate thousands of unassessed fisheries, a new comprehensive study provides a new view of global fish stocks. The results show that the overall state of fisheries is worse than previously thought. Unassessed stocks, which are often left out of global analyses because of a lack of data, are declining at disturbing rates. When these fisheries are taken into account, the results indicate that over 40 percent of fisheries have crashed or are overfished, producing economic losses in excess of $50 billion per year.

The good news is that this decline is not universal: fisheries are starting to rebound in many areas across the globe and we can learn from these examples. Recovery trends are strongest for fisheries where data on the status of the fishery exists, and in which managers and fishermen have made science-based decisions and stuck with them in the face of political pressure.

The amount of fish brought to shore could increase 40 percent on average – and double in some areas – compared to yields predicted if we continue current fishing trends.

The management solutions to overfishing are well known, tested and proven to work. While these solutions are not “one-size-fits-all” for fisheries, there are common themes. Specifically, managers and fishermen must: 1. Reduce fishing to allow stocks to rebuild; 2. Set catches at a sustainable level that is based on the best available scientific and economic information rather than short-term political pressures; and 3. Prevent dangerous fishing activities that destroy habitat, wildlife, or breeding fish.

The over fishing problem is difficult because our nature is to ignore problems that are not immediate. But the costs of doing so are very large. If we don’t behave more wisely our children will pay the price. And, in fact, this problem is so acute now that those of us that expect to live a couple decades can expect to pay the price. In rich countries this will be tolerable, a bit less fish at much higher prices. In rich countries food prices are a minor expense compared to the billions of those not living in rich countries. They will suffer the most. As will those that have jobs directly dependent on fishing.

Related: Fishless FutureEuropean Eels in Crisis After 95% Decline in Last 25 yearsLet the Good Times Roll (using Credit)SelFISHingRunning Out of FishThe State of the Oceans is Not GoodChinook Salmon Vanish Without a Trace

Pay as You Go Solar in India

Farmers Foil Utilities Using Cell Phones to Access Solar

In October, Bangalore-based Simpa Networks Inc. installed a solar panel on Anand’s whitewashed adobe house along with a small metal box in his living room to monitor electricity usage. The 25-year-old rice farmer, who goes by one name, purchases energy credits to unlock the system via his mobile phone on a pay-as-you-go model.

When his balance runs low, Anand pays 50 rupees ($1) — money he would have otherwise spent on kerosene. Then he receives a text message with a code to punch into the box, giving him about another week of electric light.
When he pays off the full cost of the system in about three years, it will be unlocked and he will get free power.

Across India and Africa, startups and mobile phone companies are developing so-called microgrids, in which stand- alone generators power clusters of homes and businesses in places where electric utilities have never operated.

Very cool. Worldwide, approximately 1.6 billion people have no access to electricity and another 1 billion have extremely unreliable access. The poorest spending up to 30% of their income on inefficient and expensive means of providing light and accessing electricity. Solutions like this, finding engineering solutions for basic needs that are market based, are great.

That the poor end up owning their solar system after just 3 years is great.

Creating great benefit to society with the smart adoption of technology and sustainable economics is something I love.

Related: Solar Power Market Solutions For Hundreds of Millions Without ElectricityAppropriate Technology: Solar Hot Water in Poor Cairo NeighborhoodsEngineering a Better World: Bike Corn-ShellerWater Pump Merry-go-Round

Dangerous Drug-Resistant Strains of TB are a Growing Threat

Drug-resistant strains of TB are out of control

The fight against new, antibiotic-resistant strains of tuberculosis has already been lost in some parts of the world, according to a senior World Health Organisation expert.

Dr Paul Nunn, head of the WHO’s global TB response team, is leading the efforts against multi-drug resistant TB (MDR-TB). Nunn said that, while TB is preventable and curable, a combination of bad management and misdiagnosis was leaving pharmaceutical companies struggling to keep up. Meanwhile, the disease kills millions every year.

“It occurs basically when the health system screws up,” said Nunn. “Treating TB requires a carefully followed regime of medication over six months. In places where health services are fragmented or underfunded, or patients poor and health professionals ill-trained, that treatment can fall short, which can in turn lead to patients developing drug-resistant strains. It’s been estimated that an undiagnosed TB-infected person can infect 10 others a year.

We tend to do a poor job of dealing with systemic effects of poorly functioning systems. Direct present threats get out attention. And we are decent at directing brain power and resources to find solutions. We are not very good at dealing with failures that put us in much worse shape in the long term. For small threats we can wait until it becomes a present threat and then deal with it. There are costs to doing this (economic and personal) but it can be done.

Some problems though become enormously complicated to deal with once they become obvious. Global climate change, for example. And often, even once they are obvious, we won’t act until the costs (economic and in human lives) are very large. It is possible that once we decide to get serious about dealing with some of these issues that the costs (economic and in human lives) will be catastrophic.

The failure to use anti-biotics medicine properly is a very serious threat to become one of these catastrophic societal failures. While tuberculosis failures may be larger in poorer countries, rich countries are failing probably much more critically in the misuse of anti-biotics (I would guess, without having much evidence at my fingertips to back up my opinion. I believe the evidence exists I am just not an expert). These failures have huge costs for all of humanity but we are risking many premature deaths because we systemically fail to deal with issues until the consequences are immediate.

Related: Extensively Drug-resistant Tuberculosis (XDR TB) (2007)What Happens If the Overuse of Antibiotics Leads to Them No Longer Working?Antibiotics Too Often Prescribed for Sinus WoesOveruse of Antibiotics (post from 2005)CDC Urges Increased Effort to Reduce Drug-Resistant Infections (2006)

Nice Interaction with a Group of Wild Mountain Gorillas Strolling Through Camp

An amazing encounter with a troop of wild mountain gorillas near Bwindi Impenetrable National Park, Uganda. The reality is that these many natural environments will be maintained only with economic incentives. A certain amount of wilderness can be maintained with economic support from outside (government, charity…). But reasonable accommodations to find ways to make retaining natural wonders economically viable are likely a key to saving much of these environments for the future. Unfortunately there are big incentives to destroy nature from those rich tourists who don’t follow the rules and push their guides to break the rules (guides often do this as they have seen great monetary rewards [in tips] for breaking the rules (bothering animals, going too close, going to off limits areas…). It is sad how often tourists at national parks show utter disregard for nature and preserving things for later generations.

It seems like this video wasn’t about that type of behavior though. Instead it is just an example of how cool nature can be at times. Animals are not quite as predictable as some believe. Like this group that wandered into the camp (as they do a couple times a year) animals often stray from their normal behavior.

Providing good jobs and sharing revenue from tourists with local residents (paying for schools…) is a very good way to encourage residents to support natural heritage sites. This is true in Africa and also near park in the United States, or anywhere else. Here is an example of an organization doing that: Conservation Through Public Health.

I am a huge fan of tying in economic benefits to natural parks and resources. I think this is part of making them not environmentally sustainable but economically sustainable. If the areas do not make a contribution to the economic well being of those living there, there is a danger the land will be tapped for uses that will damage their natural heritage value. We do have to be careful as often these economic interests can turn into greedy people just wanting whatever they can get now (I am saddened by how often tourists behave in this way at natural wonders).

People are going to determine how land is used. We can hope that purely altruistic motives will result in long preserved natural habitats. But I don’t think that hope is as sustainable as creating a situation where it is also in people’s economic interests to maintain the environments. A combination of altruistic, long term thinking and economic interest is more likely to preserve natural environment (in my opinion).

Related: Massive Western Lowland Gorilla Population in Northern Republic of CongoGrauer’s Gorilla (Eastern Lowlands Gorilla)African Parks (a business approach to conservation)Travel photos from National Parks

Stand with Science – Late is Better than Never

The USA public has made very bad decisions in who to send to Washington DC to spend our money (and the money of our children and grandchildren). We have wasted hundreds of billions that could have been spent more wisely. I happen to think investing in science and engineering is important for a societies economic health. The problem the USA has is we have chosen to waste lots of money for decades, at some point you run out of money (yes the USA government doesn’t really, as they can print it, but essentially they do – in practical terms).

I would certainly eliminate tax breaks for trust fund babies and trust fund grandchildren (while your grandchildren are going to be left holding the bag for the spending those elected by us, the grandchildren of the rich often get huge trust funds with no taxes being paid at all). But most of the people we have elected want to give trust fund babies huge payoffs. I would cut much spending in government – spending 5% less in 2020 than we did this year would be fine with me. But we don’t elect people that support that. I would support not adding new extensions to tax cuts sold with false claims and again supported by those we continue to elect. I wouldn’t allow the financial industry subverting of markets. But again we elect people that do allow that. And when the bill comes due for letting them take tens and hundreds of millions in individual profits in the good years, we can either let the economy go into a depression (maybe) or spend hundreds of billions to trillions bailing out those institutions our politicians let threaten the economy.

It might not seem fair, but there are consequences to allowing our political system to waste huge amounts of money paying of special interests for decades. And investing in science and engineering has been a casualty and will likely continue to be. Eventually you run out of money, even for the stuff that matters. Trying to fight for politicians that will put the interests of the country ahead of their donors is not something you can do effectively only when your interests are directly threatened. At that point things may already be too bad to be saved.

I have been writing about the failed political system for quite awhile now. I wrote awhile back that Hillary Clinton’s idea to tripple the number of GRFP awards was something I thought was very smart economically. But even then I questioned if we could afford it, if we refused to do anything else different (just adding new spending isn’t what the country needed).

Even in the state the politicians we continue to elect (we elect the same people election after election – there is no confusion about what they will do) we can debate what to cut and for something we spend so little on as investing science and engineering we can even easily increase that spending and not have any real impact on cutting overall spending. But those we have elected don’t show much interest in investing in science and engineering overall.

The USA continues to invest a good deal in science and engineering. But the difference in focus today versus the 1960’s is dramatic. The USA will continue to do well in the realm of science. The advantages gained over decades leave us in a hugely beneficial position – and one that takes other countries decades to catch up to. Now some countries have been working on that for decades now, and are doing very well. China, hasn’t been at it quite as long but has been making amazingly fast progress (similar to the amazing economic story).

Continue reading

Robot Prison Guards in South Korea

photo of robot prison guard

Robotic prison wardens to patrol South Korean prison

The one-month trial will cost 1bn won (£554,000) and is being sponsored by the South Korean government. It is the latest in a series of investments made by the state to develop its robotics industry.

The country’s Ministry of Knowledge Economy said in January that it had spent the equivalent of £415m on research in the sector between 2002 and 2010. It said the aim was to compete with other countries, such as Japan, which are also exploring the industry’s potential.

In October the ministry said the Korean robot market had recorded 75% growth over the past two years and was now worth about £1 billion…

The potential market for robotics is huge. Smart countries are investing in becoming the centers for excellence in that area. Japan and South Korea may well be in the lead. The USA, Germany and China also have strong communities.

Related: Robot Finds Lost Shoppers and Provides DirectionsThe Robotic Dog (2008 post)Soft Morphing Robot FutureHonda’s Robolegs Help People WalkRoachbot: Cockroach Controlled Robot

Eliminating NSF Program to Aid K-12 Science Education

Changing American science and engineering education

In exchange for funding for their graduate studies, Kahler and other fellows contribute to the science curriculum in local primary and secondary schools from kindergarten through grade 12. Kahler taught science at Rogers-Herr Middle School in Durham.

He also taught for two summers in India, and in Texas, as part of Duke TIP, the Talent Identification Program, which identifies academically gifted students and provides them with intellectually stimulating opportunities.

Through these teaching experiences in different locations and cultures, Kahler observed several factors that affect the quality of education in American schools. One important factor is the training of teachers. Unfortunately, teachers are sometimes expected to teach science without having received an adequate background in the subject.

STEM fellows helped to address this problem by contributing their expertise and by helping to increase the scientific literacy of students and their teachers.

Kahler says that NSF GK-12 has a strong, positive impact to change this because it simultaneously improves the educational experience of students in primary and secondary school and trains graduate students to communicate and teach effectively.

Unfortunately, the NSF GK-12 program is no longer in the NSF budget for 2012.

Sadly the USA is choosing to speed money on things that are likely much less worthwhile to our future economic well being. This has been a continuing trend for the last few decades so it is not a surprise that the USA is investing less and less in science and engineering education while other countries are adding substantially to their investments (China, Singapore, Korea, India…).

As I have stated before I think the USA is making a big mistake reducing the investment in science and engineering, especially when so many other countries have figured how how smart such investments are. The USA has enjoyed huge advantages economically from science and engineering leadership and will continue to. But the potential full economic advantages are being reduced by our decisions to turn away from science investment (in education and other ways).

Related: The Importance of Science EducationTop Countries for Science and Math Education: Finland, Hong Kong and KoreaEconomic Strength Through Technology Leadership

Engineers are the new Currency

Silicon Vally investor discusses keys to good investment companies: “Engineers are the new currency… having the right engineers that can innovate and deliver is absolutely vital to success… It takes a great team to help the entrepreneur develop”

The video also makes the point that what separates Silicon Valley is the engineering talent.

Related: S&P 500 CEO’s: Engineers Stay at the TopEngineers Rule at HondaThe Google Way: Give Engineers RoomStatistics on Entrepreneurship