Tag Archives: Economics

Student Engineers Without Borders Project: Learning While Making a Difference in Kenya

photo of workers digging a large hole dug for the bio-gas latrine, while schoolchildren look on.

Engineers Without Borders students make progress, learn lessons in Kenya

Knowing nothing about Third-World development, the original [Engineers Without Borders] EWB students accepted an assignment from the national EWB to bring clean water wells and sanitary latrines to 58 elementary schools in the poor Khwisero district, where villagers live by subsistence farming.

Each year, new MSU students take up the challenge, aiming not only to provide healthier drinking water but to relieve Kenyan children of the chore of hiking more than a mile to fetch water every day from dirty water holes, which cuts into their schooling, particularly for girls.

They finally broke ground on their first pipeline system, which has been three years in the making. It will bring piping water from a high-quality well to several villages and eventually to a health clinic and a market. Villagers have committed to digging trenches for the water pipes.

This is a great program. Students learn a great deal by taking on real world problems and implementing solutions. As I have said before, I really love to see appropriate technology solutions put in place. We can drastically improve people’s lives by helping put solutions in place that work, are cost effective and can be maintained. Improving people’s quality of life is at the core of why engineering is so wonderful.

Related: Smokeless Stove Saves LivesEngineering a Better World: Bike Corn-ShellerHigh School Inventor Teams @ MIT Bring Clean Water to VillageWater and Electricity for All
Continue reading

Cutting the Boarding Time of Planes in Half

I thought I wrote about this several years ago, but I guess I didn’t (I can’t find it, if I did). Experimental test of airplane boarding methods:

The Ste en method, on the other hand, orders the passengers in such a way that adjacent passengers in line are sitting in corresponding seats two rows apart from each other (e.g., 12A, 10A, 8A, 6A, etc.). This method trades a small number of aisle interferences at the front of the cabin, for the benefit of having multiple passengers stowing their luggage simultaneously. Other methods, such as Wilma and the Reverse Pyramid also realize parallel use of the aisle in a natural way as adjacent passengers are frequently sitting in widely separated rows.

We have seen experimentally that there is a marked difference in the time required to board an aircraft depending upon the boarding method used. The evidence strongly supports the heuristic argument from Ste en that methods that parallelize the boarding process by more efficiently utilizing the aisle (having more passengers stow their luggage simultaneously) will board more quickly than those that do not. The relative benefit of the application of this theory will grow with the length of the aircraft. Here, we used a 12-row mock airplane, but a more typical airplane with twice that number of rows will gain more by the implementation of parallelized boarding methods.

How this improvement scales with the cabin length is different for each method. For the Ste en method, the benefit will scale almost linearly. If the airplane is twice as long, the time savings will be nearly twice as much since the density of luggage-stowing passengers will remain the same and the boarding will still be maximally parallel. For Wilma and random boarding the benefit will not be as strong since the benefits of parallel boarding are randomly distributed along the length of the cabin instead of being regularly distributed.

I am not optimistic that airlines will even test out this method. People tend to think companies apply sensible, proven concepts and methods. But that is much less likely to be done than people think. The failure of many places to use simple queuing theory improvement (customers should form one line and be served the next available person not form many individual lines) is one example of failures by companies to apply decades old proven better methods. The poor adoption of multivariate designed experiments is another. Applying better ideas is a process that is not done very efficiently in business, health care, education or even science and engineering – in fact in any human endeavor. This is a waste that impacts each of us every day. It is also an opportunity for you to gain advantages just by applying all the good ideas lying around that others are ignoring. You need to test the ideas out in your setting (using the PDSA cycle in an organizational context a good method).

Related: Engineering the Boarding of AirplanesSuccessful Emergency Plane Landing in the Hudson RiverChecklists Save LivesImproving Engineering Education

The Politics of Anti-Science

In the 1960’s the USA had an unrealistic view of how much studying and learning about science and engineering could do. Investing is science and engineering is an extremely wise economic (and cultural) endeavor but it isn’t going to solve all the problems that exist. Somehow today we find ourselves with a large number of politically powerful people we take strong anti-science positions. These tactics reduce funding and support for beneficial research and are short sited approaches to public administration. This is an unfortunate turn of events that is damaging the American economy and will have huge damages going forward.

Thankfully other countries have seen how wise investing in science and engineering is and have more than taken up the slack created by the anti-science community. Two favorite tactics of the anti-science leaders is to try and create confusion where there is none and to turn the focus away from serious matters and instead playing silly political games. The silly games will draw donors and voters so if they care about those things more than the country and the future of the country it is a sound tactic. The damage it causes the country however I would hope would limit the use of such tactics however that has not been the case recently.

‘Shrimp On A Treadmill’: The Politics Of ‘Silly’ Studies

Take the case of the “shrimp on a treadmill.” Burnett says the senator’s report linked that work to a half-million-dollar research grant. But that money actually went to a lot of different research that he and his colleagues did on this economically important seafood species.

The treadmills were just a small part of it, a way to measure how shrimp respond to changes in water quality. Burnett says the first treadmill was built by a colleague from scraps and was basically free, and the second was fancier and cost about $1,000. The senator’s report was misleading, says Burnett, “and it suggests that much money was spent on seeing how long a shrimp can run on a treadmill, which was totally out of context.”

John Hart, a Coburn spokesperson, said in an email that “our report never claimed all the money was spent on shrimp on a treadmill. The scientists doth protest too much. Receiving federal funds is a privilege, not a right. If they don’t want their funding scrutinized, don’t ask.”

What the politicians are doing is exactly what this spokesperson suggests – they are withdrawing from the anti-science culture created by some in Washington: they are moving their research to countries that support rather than attack science. That is a very bad thing for the USA. There are a number of very bad economic policies a government can take. Driving scientists and engineers into the arms of other countries is one of the worst.
Continue reading

Career Prospect for Engineers Continues to Look Positive

As I have written previously the career prospects for engineers are bright around the globe. Many countries realize the importance of engineering and have taken steps to compete as a center of excellence for engineering. It is a smart economic policy. Ironically, the USA, that did such a great job at this in the 1960’s and 1970’s, has been falling down in this regard. A significant reason for this is the USA can only fund so many things and a broken health care system, military complex, bailouts to bankers (trust fund babies and others) cost a lot of money. You chose what to fund, and those are taking much of the available USA funds. There are also non-economic reasons, such as the turn in the last decade in the USA to make the barriers for foreigner engineers (and others) to go through to go to school, visit and stay in the USA have all increased dramatically.

Back to the prospects for engineers: their are shortages of good engineers all over (and the future projections don’t show any reason to believe this will change). Germany Faces a Shortage of Engineers:

In June, the Association of German Engineers (VDI) reported that there were 76 400 vacant engineering jobs—an all-time high.

Policymakers in Berlin have responded to the shortage of skilled workers with a number of measures, including changes in immigration rules that allow German companies to hire engineers from other countries, including those outside of the European Union. Among them: The annual salary that companies must pay foreigners has been lowered from 60,000 Euro (US $95,000) to 40,000 Euro, which is roughly the starting salary of an engineering graduate in Germany…

To make it easy for engineers to move around Europe, engineering associations and other groups across Europe are working with the European Commission (the executive arm of the European Union) to launch the new Engineering Card. The card, which German engineers can apply for now and other countries are planning to launch, provides standardized information about the engineer’s qualifications and skills for greater transparency.

“We don’t expect many engineers will come, because among other reasons, there is a shortage of engineers across Europe,”

Related: Engineering Again Dominates The Highest Paying College Degree ProgramsS&P 500 CEO’s: Engineers Stay at the TopChina’s Technology Savvy LeadershipEngineers: Future ProspectsEconomic Strength Through Technology Leadership

Continue reading

How Algorithms Shape our World

Our modern world is influenced greatly by algorithms. As computing power allowed incredibly complex calculation we have taken advantage of that and used algorithms to find solutions to our desires. Great things are done but we also find ourselves getting into trouble occasionally as we develop these algorithm.

Related: Algorithmic Self-AssemblyComputer Science RevolutionGoogle’s Answer to Filling Jobs Is an AlgorithmWhat are Genetic Algorithms?Google Prediction API

The State of the Oceans

World’s oceans in ‘shocking’ decline

In a new report, [an expert panel of scientists] warn that ocean life is “at high risk of entering a phase of extinction of marine species unprecedented in human history”. They conclude that issues such as over-fishing, pollution and climate change are acting together in ways that have not previously been recognised.

ocean acidification, warming, local pollution and overfishing are acting together to increase the threat to coral reefs – so much so that three-quarters of the world’s reefs are at risk of severe decline.

The report also notes that previous mass extinction events have been associated with trends being observed now – disturbances of the carbon cycle, and acidification and hypoxia (depletion of oxygen) of seawater.

Levels of CO2 being absorbed by the oceans are already far greater than during the great extinction of marine species 55 million years ago (during the Paleocene-Eocene Thermal Maximum), it concludes.

The overfishing of our oceans has been a problem for over 100 years and a known problem, that we continue to give too little attention to. Adding to that impacts of climate change and the state of ocean life is in trouble. The decision of our population to not deal with the causes of climate change will have very bad consequences. It is a shame we have so little caring about the consequences of our decisions. And even sadder that our “leaders” do such an appalling job of leading – instead they pander to selfish immediate gratification.

Related: Altered Oceans: the Crisis at Sea (2006)Unless We Take Decisive Action, Climate Change Will Ravage Our PlanetArctic System on Trajectory to New, Seasonally Ice-Free State (2005)

Engineering Again Dominates The Highest Paying College Degree Programs

As usual most of the highest paying undergraduate college degrees in the USA are engineering. Based on data from payscale, all of the top 10 highest paying fields are in engineering. The highest non-engineering fields are applied mathematics and computer science. Petroleum Engineering salaries have exploded over the last few years to $93,000 for a starting median salary, more than $30,000 above the next highest paying degree.

Mid-career median salaries follow the same tendency for engineering degrees, though in this case, 3 of the top 10 salaries (15 years into a career) are for those with non-engineering degrees: applied mathematics, physics and economics.

Highest Paid Undergrad College Degrees
Degree Starting Median Salary Mid-Career Median Salary 2009 starting salary
Petroleum Engineering $93,000 $157,000
Chemical Engineering $64,800 $108,000 $65,700
Nuclear Engineering $63,900 $104,000
Computer Engineering $61,200 $99,500 $61,700
Electrical Engineering $60,800 $104,000 $60,200
Aerospace Engineering $59,400 $108,000 $59,600
Material Science and Engineering $59,400 $93,600
Industrial Engineering $58,200 $97,400 $57,100
Mechanical Engineering $58,300 $97,400 $58,900
Software Engineering $56,700 $91,300
Applied Mathematics $56,400 $101,000
Computer Science $56,200 $97,700 $56,400

Related: PayScale Survey Shows Engineering Degree Results in the Highest Pay (2009)Engineering Majors Hold 8 of Top 10 Highest Paid Majors (2010)Engineering Graduates Get Top Salary Offers in 2006Shortage of Petroleum Engineers (2006)10 Jobs That Provide a Great Return on Investment

More degrees are shown in the following table, but this table doesn’t include all the degree; it just shows a sample of the rest of the degrees.
Continue reading

Appropriate Technology: Washing Clothes by Machine Instead by Hand

Hang Rosling provides great presentations exploring economics and human well being. I agree with his point that we should be thankful for economic and engineering progress that has freed us from menial tasks and allowed us to spend our time in higher value ways.

We need to remember (as he shows) there are many in the world that still do not enjoy these advances. For example, a majority of the world must hand wash their clothes. Engineers should continue to focus on the mass of humanity that needs fairly simple solutions.

He is also right that we need to find solutions to the extremely heavy use of fossil fuels by the rich countries. If the rich countries don’t reduce the pollution there will be great problems. And if the costs of clean energy are not decreased (which they should do) fast enough (which is the question), those that start to be able to afford the rich lifestyle, will add to the dangers we face economically and environmentally of continuing the unsustainable energy footprint the rich countries have been making.

Related: Washing Machine Uses 90% Less WaterClean Clothes Without SoapHans Rosling on Global Population GrowthAutomatic Dog Washing Machine

Wave Disk Engine Could Increase Efficiency 5 Times

Norbert Müller’s group has received $2.5 million from the U.S. Department of Energy Advanced Research Projects Agency-Energy (ARPA-E) in 2010 to build and develop the wave disk engine, which uses turbo combustion “shock wave” technology to convert either liquid fuel or compressed natural gas or hydrogen into electrical power. With this engine, fuel efficiency for hybrid vehicles could increase 5 times compared to internal combustion engine vehicles on the road today (and 3.5 times less than current hybrid cars), while reducing costs by 30%. The goal of Müller’s team is to produce an engine that would give hybrid vehicles a 500-mile driving range and reduce carbon dioxide emissions by as much as 90%.

In the video he says they hope to have the engines in production vehicles within 3 years. My guess is he is being quite optimistic, but we will see. The new engine would allow 1,000 pounds to be removed from the weight of cars (by removing the need for drive train, radiator…).

Related: $10 Million X Prize for 100 MPG CarEconomic Benefits Brought by Investing in Engineering59 MPG Toyota iQ Diesel Available in Europe (2008)MIT Hosts Student Vehicle Design Summit (2006)

Why Do People Invest Large Amounts of Time and Money?

According to Neil deGrasse Tyson the reasons people/societies take on huge expenditures (Great Wall of China, Manhattan project, Apollo space missions, Spanish ocean exploration, TVA, Egyptian pyramids, Cathedrals):

  1. defense/war
  2. economic return
  3. veneration to power

“The urge to discover is not there, I wish it were it is just not.” Many countries have figured out the economic benefits of large investments of science and engineering: China, Singapore, Korea… Europe and the USA are limiting such investments while continuing less useful spending. I think the results will be very obvious 20 years from now. It isn’t that the USA and Europe are not making such investments, they are, but at a much lower rate than probably is wise economically.

Related: Neil Degrasse Tyson: Scientifically Literate See a Different WorldVaccines Can’t Provide Miraculous Results if We Don’t Take ThemNanotechnology Investment as Strategic National Economic PolicyEconomic Strength Through Technology Leadership