Tag Archives: Economics

Mihaly Csikszentmihalyi: Creativity, Fulfillment and Flow

“After a certain basic point, which translates, more or less, to just a few thousand dollars above the minimum poverty level, increases in material well being don’t see to affect how happy people are.”

The speech includes, the first purpose of incorporation at Sony:

To establish a place of work where engineers can feel the joy of technological innovation, be aware of their mission to society, and work to their heart’s content.

Excellent books by Mihaly Csikszentmihalyi:
Flow: The Psychology of Optimal Experience by Mihaly Csikszentmihalyi, 1991. People enter a flow state when they are fully absorbed in activity during which they lose their sense of time and have feelings of great satisfaction.
Good Business: Leadership, Flow, and the Making of Meaning.
Creativity: Flow and the Psychology of Discovery and Invention by Mihaly Csikszentmihalyi, 1997. Drawing on hundreds of interviews with exceptional people, from biologists and physicists to politicians and business leaders to poets and artists, the author uses his famous “flow” theory to explain the creative process.

Related: Honda EngineeringThe Science of HappinessCurious Cat Management: posts on psychologyEngineers Should Follow Their HeartsThe Purpose of an Organization

How the Practice and Instruction of Engineering Must Change

Chief Scientist for the Rocky Mountain Institute and MacArthur Fellow, Amory Lovins, describes how small gains in efficiency at the consumption point can trigger gains that are magnitudes larger at higher levels and discusses how engineering must be practiced and taught fundamentally different.

Related: MIT Hosts Student Vehicle Design Summit59 MPG Toyota iQ Diesel Available in EuropeWebcast: Engineering Education in the 21st Century

Unless We Take Decisive Action, Climate Change Will Ravage Our Planet

Lake McDonald, Glacier National Park photo by John Hunterphoto by John Hunter at Glacier National Park.

Tomorrow 56 newspapers, in 45 countries, are taking the unprecedented step of publishing the same editorial. The editorial will appear in 20 languages, as the United Nations Climate Change Conference is set to begin in Copenhagen.

Unless we combine to take decisive action, climate change will ravage our planet, and with it our prosperity and security. The dangers have been becoming apparent for a generation. Now the facts have started to speak: 11 of the past 14 years have been the warmest on record, the Arctic ice-cap is melting and last year’s inflamed oil and food prices provide a foretaste of future havoc. In scientific journals the question is no longer whether humans are to blame, but how little time we have got left to limit the damage. Yet so far the world’s response has been feeble and half-hearted.

Climate change has been caused over centuries, has consequences that will endure for all time and our prospects of taming it will be determined in the next 14 days. We call on the representatives of the 192 countries gathered in Copenhagen not to hesitate, not to fall into dispute, not to blame each other but to seize opportunity from the greatest modern failure of politics. This should not be a fight between the rich world and the poor world, or between east and west. Climate change affects everyone, and must be solved by everyone.

The science is complex but the facts are clear. The world needs to take steps to limit temperature rises to 2C, an aim that will require global emissions to peak and begin falling within the next 5-10 years.

Few believe that Copenhagen can any longer produce a fully polished treaty; real progress towards one could only begin with the arrival of President Obama in the White House and the reversal of years of US obstructionism. Even now the world finds itself at the mercy of American domestic politics, for the president cannot fully commit to the action required until the US Congress has done so.

the rich world is responsible for most of the accumulated carbon in the atmosphere – three-quarters of all carbon dioxide emitted since 1850. It must now take a lead, and every developed country must commit to deep cuts which will reduce their emissions within a decade to very substantially less than their 1990 level.

The transformation will be costly, but many times less than the bill for bailing out global finance — and far less costly than the consequences of doing nothing.

Many of us, particularly in the developed world, will have to change our lifestyles. The era of flights that cost less than the taxi ride to the airport is drawing to a close. We will have to shop, eat and travel more intelligently. We will have to pay more for our energy, and use less of it.

Kicking our carbon habit within a few short decades will require a feat of engineering and innovation to match anything in our history. But whereas putting a man on the moon or splitting the atom were born of conflict and competition, the coming carbon race must be driven by a collaborative effort to achieve collective salvation.

The politicians in Copenhagen have the power to shape history’s judgment on this generation: one that saw a challenge and rose to it, or one so stupid that we saw calamity coming but did nothing to avert it. We implore them to make the right choice.

Most of the newspapers have taken the unusual step of featuring the editorial on their front page. Even with the overwhelming evidence and tremendous consequences I don’t expect politicians to make the right decisions. We know full well what the choices are. We just decide to avoid the unpleasant choices. To bad so many that don’t get to choose are going to suffer. The politicians will be weak. They will play to those that pay them money. They will delay taking important steps now. We have chosen to elect non-leaders for quite some time. We can’t really expect them to act with courage, vision, wisdom and leadership given who we elect. The politicians are responsible for their failing but we are more responsible for electing them. Some politicians, even now, do possess fine qualities but not nearly enough. Maybe I will be proven wrong, but I doubt it.

Related: What’s Up With the Weather?Arctic System on Trajectory to New, Seasonally Ice-Free StateScientists Denounce Global Warming Report EditsDeforestation and Global WarmingMIT’s Energy ‘Manhattan Project’Global Installed Wind Power Now Over 1.5% of Global Electricity DemandBigger Impact: 15 to 18 mpg or 50 to 100 mpg?Solar Thermal in Desert, to Beat Coal by 202076 Nobel Laureates in Science Endorse Obama

Re-engineering the Food System for Better Health

Good food nation

According to the Centers for Disease Control, between 1980 and 2006 the percentage of obese teenagers in the United States grew from 5 to 18, while the percentage of pre-teens suffering from obesity increased from 7 to 17.

Obesity is widespread due to our national-scale system of food production and distribution, which surrounds children – especially lower-income children – with high-calorie products…
90 percent of American food is processed – according to the United States Department of Agriculture – meaning it has been mixed with ingredients, often acting as preservatives, that can make food fattening.

Now, in another report finished this October after meetings with food-industry leaders, the MIT and Columbia researchers propose a solution: America should increase its regional food consumption.

Only 1 to 2 percent of all food consumed in the United States today is locally produced. But the MIT and Columbia team, which includes urban planners and architects, believes widespread adoption of some modest projects could change that, by increasing regional food production and distribution.

To help production, the group advocates widespread adoption of small-scale innovations such as “lawn to farm” conversions in urban and suburban areas, and the “10 x 10 project,” an effort to develop vegetable plots in schools and community centers. Lawns require more equipment, labor and fuel than industrial farming nationwide, yet produce no goods. But many vegetables, including lettuce, cucumbers and peppers, can be grown efficiently in small plots.

As Albright sees it, the effort to produce healthier foods “fits right in with the health-care reform effort right now because chronic diseases are so costly for the nation.” America currently spends $14 billion annually treating childhood obesity, and $147 billion treating all forms of obesity.

Good stuff. We need to improve health in the USA. The current system is unhealthy and needs to be improved. The public good from improving the health of society is huge (both in terms of individual happiness and economic benefits).

Related: Rethinking the Food Production SystemStudy Finds Obesity as Teen as Deadly as SmokingEat food. Not too much. Mostly plants.Active Amish Avoid ObesityObesity Epidemic ExplainedAnother Strike Against Cola

The Psychology of Choice: We can be Overwhelmed

Is less always more? by Dave Munger

shoppers with just a few flavors of jam to choose from are more likely to buy than those given dozens of options (including the original choices). It’s as if we’re paralyzed when we have a large number of options to choose from, and so we end up getting nothing.

Significantly more students bought the pens when there was a middle number of choices than when there were either high or low numbers of choices. So we appear to prefer a moderate number of choices — not too many, and not too few.

Shah and Wolford believe that purchasing patterns are likely to be similar for a wide range of products — although depending on the particular product, the optimal number of choices might be higher or lower than the 8-12 range they found for roller-ball pens.

In The Paradox of Choice – Why More Is Less, Barry Schwartz discusses related ideas and mentions the only kind of mobile phone you can’t get not is a simple one.

Related: The Psychology of Too Much ChoiceThe Decoy EffectThe Brain is Wired to Mull Over Decisions

Energy Secretary Steve Chu Speaks On Funding Science Research

Energy Secretary Steve Chu (and Nobel Laureate) speaks with Google CEO Eric Schmidt about science research. One of the things Steve Chu is doing is funding high risk experiments that have great potential. This is something that is often said should be done but then people resort to safe investments in research. Taking these risks is a very good idea.

This is another example the remarkable way Google operates. The CEO actually understands science and the public good. Google also provides a huge amount of great material online in the form of webcasts of those speaking at Google. Google behaves like a company run by engineers. Other companies have engineers in positions of power but behave like companies run by any MBAs (whether they are lawyers, accountants, marketers or engineers).

Related: President’s Council of Advisors on Science and TechnologyScientists and Engineers in CongressEric Schmidt on Google, Education and EconomicsLarry Page on How to Change the WorldDiplomacy and Science ResearchGoogle Investing Huge Sums in Renewable Energy and is Hiring

2008 National Medals of Science and National Medals of Technology and Innovation

Presidential Medal of Science - USA
The winners of the 2008 National Medals of Science, and National Medals of Technology and Innovation, have been announced. The recipients will receive the awards a White House ceremony in October.

“These scientists, engineers and inventors are national icons, embodying the very best of American ingenuity and inspiring a new generation of thinkers and innovators,” President Obama said. “Their extraordinary achievements strengthen our nation every day – not just intellectually and technologically but also economically, by helping create new industries and opportunities that others before them could never have imagined.”

National Medal of Science
Dr. Berni Alder, Lawrence Livermore National Laboratory, CA
Dr. Francis Collins, National Institutes of Health, MD
Dr. Joanna Fowler, Brookhaven National Laboratory, NY
Dr. Elaine Fuchs, The Rockefeller University, NY
Dr. James Gunn, Princeton University, NJ
Dr. Rudolf Kalman, Swiss Federal Institute of Technology, Zurich
Dr. Michael Posner, University of Oregon, OR
Dr. JoAnne Stubbe, Massachusetts Institute of Technology, MA
Dr. J. Craig Venter, J. Craig Venter Institute, MD & CA

National Medal of Technology and Innovation
Dr. Forrest M. Bird, Percussionaire Corp., ID
Dr. Esther Sans Takeuchi, University at Buffalo, SUNY, NY
Team: Dr. John E. Warnock and Dr. Charles M. Geschke (Adobe Systems Inc., CA)
Company: IBM Corporation, NY

Related: 2007 National Medals of Science and TechnologyNational Science and Technology Medals (for 2005 and 2006)2004 Medal of Science Winners (including Norman E. Borlaug)

Norman E. Borlaug 1914-2009

The Father Of the Green Revolution

Norman E. Borlaug, 95, an American plant pathologist who won the Nobel Peace Prize in 1970 for starting the “Green Revolution” that dramatically increased food production in developing nations and saved countless people from starvation, died Saturday at his home in Dallas.

“More than any other single person of this age, he has helped provide bread for a hungry world,” the Nobel committee said in honoring him. “Dr. Borlaug has introduced a dynamic factor into our assessment of the future and its potential.”

In his lecture accepting the Nobel Prize, he said an adequate supply of food is “the first component of social justice. . . . Otherwise there will be no peace.”

In 1977, Dr. Borlaug received the Medal of Freedom, the highest civilian honor of the U.S. government.

Billions Served: Norman Borlaug interviewed by Ronald Bailey

As a matter of fact, Mother Nature has crossed species barriers, and sometimes nature crosses barriers between genera–that is, between unrelated groups of species. Take the case of wheat. It is the result of a natural cross made by Mother Nature long before there was scientific man. Today’s modern red wheat variety is made up of three groups of seven chromosomes, and each of those three groups of seven chromosomes came from a different wild grass. First, Mother Nature crossed two of the grasses, and this cross became the durum wheats, which were the commercial grains of the first civilizations spanning from Sumeria until well into the Roman period. Then Mother Nature crossed that 14-chromosome durum wheat with another wild wheat grass to create what was essentially modern wheat at the time of the Roman Empire.

Durum wheat was OK for making flat Arab bread, but it didn’t have elastic gluten. The thing that makes modern wheat different from all of the other cereals is that it has two proteins that give it the doughy quality when it’s mixed with water. Durum wheats don’t have gluten, and that’s why we use them to make spaghetti today. The second cross of durum wheat with the other wild wheat produced a wheat whose dough could be fermented with yeast to produce a big loaf. So modern bread wheat is the result of crossing three species barriers, a kind of natural genetic engineering.

I see no difference between the varieties carrying a BT gene or a herbicide resistance gene, or other genes that will come to be incorporated, and the varieties created by conventional plant breeding. I think the activists have blown the health risks of biotech all out of proportion.

the data that’s put out by the World Health Organization and [the U.N.’s Food and Agriculture Organization], there are probably 800 million people who are undernourished in the world. So there’s still a lot of work to do.

I am a bit more cautious about supporting genetic engineering in our food supply but I agree with him that we need to remain focused on the lives of hundreds of millions of hungry people (which is far too often ignored). I am worried about the risks to the environment and human health. I am also worried about the concentration of food plants in a greatly reduced genetic varieties that are more productive in general but increase the risks of massive food failures (due to limited genetic varieties).

Related: 20 Scientists Who Have Helped Shape Our World2004 Medal of Science WinnersForgotten Benefactor of HumanityFive Scientists Who Made the Modern WorldWheat Rust ResearchNorman Borlaug and Wheat Stem Rust

Engineer Tried to Save His Sister and Invented a Breakthrough Medical Device

Here is another remarkable example of the great benefit engineers provide society.

How a software engineer tried to save his sister and invented a breakthrough medical device

I wanted to help my sister as much as I could. I went to Medline, where there are hundreds of thousands of documents describing clinical studies, to see what I could find.

There are billions of dollars spent every year on clinical studies. I was surprised to discover that there were sometimes clinical studies of treatments for which there were no clinical applications. The trials would show successful results but no clinical applications.

I found a 1987 Italian funded set of clinical studies that showed successful treatment of tumors by the application of chemotherapy directly into the tumors. But I could find nothing since then.

It took us two years to do the engineering. And it has taken the FDA seven years and two months to approve the product for sale. We were able to shorten the FDA process a little by saying that it was similar to other devices that had already been approved.

Great stuff.

Related: Cardiac Cath Lab: Innovation on SiteSurgeon-engineer advances high-tech healingHome Engineering: Dialysis machineStoryCorps: Passion for Mechanical EngineeringEngineers Should Follow Their Hearts

Researchers Work to Protect Bats Against Deadly Disease

Researchers work to protect Wisconsin bats against deadly disease

Redell, who studies bats for the Department of Natural Resources, lives every day now with the threat of a disease called white-nose syndrome hanging over his head. The disease, though not yet in Wisconsin, has killed more than 90 percent of the cave bats in Eastern states such as New York and Vermont. Experts predict it could make its way to Wisconsin, with its eight species and hundreds of thousands of bats, in as little as two years.

One female little brown bat – with a body less than the length of your thumb – can eat its body weight in insects in one evening, Redell said. Such is the insect-hunting prowess of the bats that they are thought to save farmers billions of dollars in crop losses, according to Sheryl L. Ducummon, with Bat Conservation International.

In a recent scientific article on the ecological and economic importance of bats, Ducummon reported that, in one summer, the 150 bats in an average colony of big brown bats can conservatively eat 38,000 cucumber beetles, which attack corn and other farm crops. Damage from the beetle and their larvae cost corn farmers as much as $1 billion a year.

The loss of such an insect-eating force could be devastating, Redell said. The approximate 1 million bats that have already died of white-nose syndrome in the last three years on the East Coast would have eaten 700,000 tons of insects were they still hunting the night skies, he said.

Bats perform other important tasks, too. Several Western species serve crucial roles as pollinators for desert plants such as agave and as seed dispersers for dozens of species of cacti.

“I mean, this is like a mouse that flies, but it has the predatory capabilities of a polar bear,” Blehert said. “They are physically adapted to command the night sky. You’re talking about a little thing with a body less than half the size of your thumb whose heartbeat can get up to 1,000 beats a minute when they are flying but that can slow when they are hibernating in the winter to 4 beats a minute. And they live 20 to 25 years!”

Bats really are amazing and very valuable animals.

Related: Bats Are Dying in North-East USANectar-Feeding BatsMoth Jams Bat Sonar