Tag Archives: economy

Arctic Seed Vault

Work begins on Arctic seed vault:

More than 100 countries have backed the vault, which will store seeds, packaged in foil, at sub-zero temperatures.

The vault’s purpose is to ensure survival of crop diversity in the event of plant epidemics, nuclear war, natural disasters or climate change; and to offer the world a chance to restart growth of food crops that may have been wiped out.

At temperatures of minus 18C (minus 0.4F), the seeds could last hundreds, even thousands, of years. Even if all cooling systems failed, explained Mr Riis-Johansen, the temperature in the frozen mountain would never rise above freezing due to the permafrost on the mountainside.

Mexico: Pumping Out Engineers

Mexico: Pumping Out Engineers

Currently, 451,000 Mexican students are enrolled in full-time undergraduate programs, vs. just over 370,000 in the U.S. The Mexican students benefit from high-tech equipment and materials donated to their schools by foreign companies, which help develop course content to fit their needs. Many of these engineers graduate knowing how to use the latest computer-assisted design (CAD) software and speaking fluent English.

Another country on the engineering education bandwagon for economic growth.

Those figures are quite impressive. I would like to see what Vivek Wadhwa (one of the authors of the Duke study: USA Under-counting Engineering Graduates) says about the comparability of the figures. Still, the number of engineering undergraduate students in Mexico surprises me; this is one more indication of how many people see the value of engineering education.

Related:

Science and Engineering Jobs

Alarm as white-collar jobs vanish overseas (link broken so I removed it), Australian Financial Review:

The council’s draft report, a copy of which was obtained by the Australian Financial Review, says Australia needs to respond by investing in education and research and development, and by linking up with developing knowledge sectors in China and India.

There has been a steady progression up the value scale in work sent to low-cost countries – from manufacturing to data processing, call centres and computer software.

Now there is evidence that China and India are competing for high-level jobs in financial services, industrial design, architecture, research and development, engineering, medicine and even management areas such as human resources and business consulting.

Every country realizes the value to their economy of jobs in science, engineering and technology. Countries are taking steps to create a environment that will attract those jobs. Countries that do this less effectively will suffer.

Previous posts on the topic of economics, science and engineering

Phony Science Gap?

A Phony Science Gap? by Robert Samuelson:

And the American figures excluded computer science graduates. Adjusted for these differences, the U.S. degrees jump to 222,335. Per million people, the United States graduates slightly more engineers with four-year degrees than China and three times as many as India. The U.S. leads are greater for lesser degrees.

It is good to see more people using the data from the Duke study we have mentioned previously: USA Under-counting Engineering GraduatesFilling the Engineering Gap. However, I think he misses a big change. It seems to me that the absolute number of graduates each year is the bigger story than that the United States has not lost the percentage of population rate of science and engineering graduates yet. China significantly exceeds the US and that India is close to the US currently in science and engineering graduates. And the trend is dramatically in favor of those countries.

There has been a Science gap between the United States and the rest of the world. That gap has been between the USA, in the lead, and the rest. That gap has been shrinking for at least 10 years and most likely closer to 20. The rate of the decline in that gap has been increasing and seems likely to continue in that direction.

Despite an eroding manufacturing base and the threat of “offshoring” of some technical services, there’s a rising demand for science and engineering skills. That may explain higher enrollments and why this “crisis” — like the missile gap — may be phony.

I wonder what eroding manufacturing base he is referring to? The United States is the world’s largest manufacturer. The United States continues to increase its share of the world manufacturing and increase, incrementally year over year. Yes manufacturing employment has been declining (though manufacturing employment has declined far less in the United States than in China). Granted China has been growing tremendously quickly, but they are still far behind the United States in manufacturing output.
Continue reading

China’s Economic Science Experiment

The Great Chinese Experiment, Horace Freeland Judson, MIT Technology Review. China is betting its economic health on becoming a world leader in the sciences. But will it succeed? This long detailed article provides insight into the challenges, practices and potential for China’s economy and scientific innovation going forward.

“The major scientific program running right now in China is this one, called 97-3 Program,” Professor Cao said. “A major huge program to catch up with the scientific development of the whole world. Started in 1997, March. This program is for basic research. According to the needs of the nation.” Technological applications? Or basic science? “Both,” she said with a sharp nod. The goal is split in two? “Yes,” she said. “I think that the major scientific program is the whole-world program. Not just for China. The second is the urgent requirement for our country’s social and economic development.”

The 97-3 Program concentrates research in six areas, agricultural biotechnology, energy, informatics, natural resources and the environment, population and health, and materials science. Cao’s own concern is with population and health. In this area the research is divided into 20 fields. She took me through them with the aid of a 33-page position paper she had put together in anticipation of my visit. The list is diverse, the projects ambitious. Yet even the most basic research — in stem cells, for example — has been defined in terms of immediate applications.

Information on the China 973 basic research program from the Chinese government’s web site:

Stipulation and implementation of the 973 Program is an important decision of our country to carry out the two development strategies of ” Rejuvenating the country through science and technology ” and ” sustainable development”, as well as to further reinforce basic research and science and technology work. It is an important measure of our country to achieve the great objectives of China’s economic, scientific & technology, and social development by 2010-2050 , to upgrade the sustainable S & T innovative capabilities and to meet the challenges of the new century.

While the engineering credentials of China’s leadership is noted often, it is still interesting to note that China’s 9 senior government officials are all engineers. A Technocrat Riding a Wild Tiger:

When China’s leaders meet with Hu each week in Beijing’s government district, Zhongnanhai, they could spend hours discussing cables, switches, tool-making machines and control devices. That’s because every one of them has a degree in engineering. The president himself, the son of a tea merchant from Jiangsu Province, trained to build hydroelectric power stations, while the others hold degrees in electrical engineering, metallurgy and geology.

The Innovation Agenda

Democrat’s are proposing an Innovation Agenda, including:

Educate 100,000 new scientists, engineers, and mathematicians in the next four years by proposing a new initiative, working with states, businesses, and universities, to provide scholarships to qualified students who commit to working in the fields of innovation.

Place a highly qualified teacher in every math and science K-12 classroom by offering upfront tuition assistance to talented undergraduates and by paying competitive salaries to established teachers working in the fields of math and science; institute a “call to action” to professional engineers and scientists, including those who have retired, to join the ranks of our nation’s teachers.

Create a special visa for the best and brightest international doctoral and postdoctoral scholars in science, technology, engineering and mathematics.

Make college tuition tax-deductible for students studying math, science, technology, and engineering.

They also propose doubling the funding for the National Science Foundation. Making promises about what you will do is much different than actually doing something: lets see what actually happens.

Currently the United States has over $8,000,000,000,000 (that is over $8 trillion – see current count) in debt (increasing by over $400 Billion a year). That brings every person’s share to over $27,000. Given that, it seems reckless to just add spending without either cutting something else or increasing taxes and I don’t see those details in the innovation agenda. Of course, my opinion on that being reckless may not be shared by a majority choosing to spend more money – after all they have been adding to that debt at a record pace the last few years.

To me, the most realistic federal action, given the role of the federal government (k-12 education is primarily a state and local responsibility) is the scholarship proposal but lets see what actually happens. In July we posted about proposed Science and Engineering Fellowships Legislation (which also seems like a good idea). We have not been able to find out about any progress on that legislation. From the November AAAS S&T newsletter:

Meanwhile, across the Capitol, Senators Joe Lieberman (D-CT) and John Ensign (R-NV) are currently drafting bipartisan legislation to implement a series of policies based on the “National Innovation Initiative” report from the Council on Competitiveness. The legislation, which the senators originally planned to introduce in September, has reportedly been delayed by lack of agreement on its immigration provisions.

I am not certain whether the legislation being worked on includes the fellowships or not (though I would guess that it does).

Science and Engineering Doctoral Degrees Worldwide

Lagging Engineer Degrees a Crisis by Kevin Hall:

Relative to the sizes of their populations, Asian nations are graduating five times as many undergraduate students in engineering as the United States. A study by Engineering Trends determined that the United States ranks 16th per capita in the number of doctoral graduates and 25th in engineering undergraduates per million citizens.

U.S. universities continue awarding more doctoral degrees in engineering than universities anywhere else. But the American Association of Engineering Societies said foreign nationals received 58 percent of the U.S. doctoral degrees in engineering last year: 3,766 degrees out of 6,504. A decade earlier, they accounted for less than half.

I doubt that US universities are awarding more doctoral degrees than others are. Even if that is true I doubt it will last for even 5 more years. You might measure this in various ways including: absolute number of doctoral degrees awarded or using a per capita number. I believe several European countries are ahead today on a per capita basis. On an absolute basis I would be surprised if China or India isn’t already ahead. But if neither is, that will not true for long. I tried to find some good data online and wasn’t able to find anything certain in the time I took. Lost Dominance in Ph.D. Production sites a National Bureau of Economic Research report:
Continue reading