Tag Archives: Education

Harvard Elevates Engineering Profile

Harvard is planing to move engineering education to the Harvard School of Engineering and Applied Sciences within the Faculty of Arts and Sciences (via Engineering is Becoming a Liberal Art).

The Technology Mosaic by David Epstein:

as Paul S. Peercy, dean of engineering at the University of Wisconsin and chair of the Engineering Dean’s Council at the American Society for Engineering Education put it: “I used to say, ‘look around, everything except the plants are engineered.’ Now I say, ‘look around, everything and some of the plants are engineered.’”

From Harvard’s announcement:

President Lawrence H. Summers. “It marks our recognition of the profound importance of technology and applied sciences for every aspect of our society. It makes visible our commitment to major new resources and faculty positions in this vital area, and our dedication to educating a new generation of technologically-literate students.

In order to provide adequate coverage of modern engineering and applied science for students and to be in the vanguard of emerging research areas, the school plans to increase the university’s engineering and applied sciences faculty by about 50 percent in the coming years.

$1 Million Each for 20 Science Educators

Howard Hughes Medical Institute (HHMI) Names 20 New Million-Dollar Professors – Top Research Scientists Tapped for their Teaching Talent:

“The scientists whom we have selected are true pioneers—not only in their research, but in their creative approaches and dedication to teaching,” said Thomas R. Cech, HHMI president. “We are hopeful that their educational experiments will energize undergraduate science education throughout the nation.”

The Institute awarded $20 million to the first group of HHMI professors in 2002 to bring the excitement of scientific discovery to the undergraduate classroom.

The experiment worked so well that neurobiologist and HHMI professor Darcy Kelley convinced Columbia University to require every entering freshman to take a course on hot topics in science. Through Utpal Bannerjee’s HHMI program at the University of California, Los Angeles, 138 undergraduates were co-authors of a peer-reviewed article in a top scientific journal. At the University of Pittsburgh, HHMI professor Graham Hatfull’s undergraduates mentored curious high school students as they unearthed and analyzed more than 30 never-before-seen bacteriophages from yards and barnyards. And Isiah Warner, an award-winning chemist and HHMI professor at Louisiana State University, developed a “mentoring ladder,” a hierarchical model for integrating research, education, and peer mentoring, with a special emphasis on underrepresented minority students.

Science Education in the 21st Century

Photo of Dr. Carl Wieman

Science Education in the 21st Century: Using the Tools of Science to Teach Science podcast by Dr. Carl Wieman, recipient of the Nobel Prize in Physics in 2001. Also received the first NSF Distinguished teaching Scholars award (NSF’s “highest honor for excellence in both teaching and research”) and the National Professor Of The Year (CASE and Carnegie Foundation).

Dr. Carl Wieman, recipient of the Nobel Prize in Physics in 2001, discusses the failures of traditional educational practices, even as used by “very good” teachers, and the successes of some new practices and technology that characterize this more effective approach. Research on how people learn science is now revealing how many teachers badly misinterpret what students are thinking and learning from traditional science classes and exams.

However, research is also providing insights on how to do much better. The combination of this research with modern information technology is setting the stage for a new more effective approach to science education based on using the tools of science. This can provide a relevant and effective science education to all students.

Podcast recording 21 Nov 2005 at the University of British Columbia.

Text of March 15, 2006 Dr. Wieman testimony to the US House of Representatives Science Committee.

Nobel Laureate Joins UBC to Boost Science Education

via: Maintaining scientific humility

Engineering Education Worldwide

Quality vs. Quantity in Engineering

This article discusses the Duke study (USA Under-counting Engineering Graduates) proposing an adjustment to the numbers used for comparing engineering education results of the United States, China and India.

Like Wadhwa, Johnson suggested that the recent emphasis on increasing the number of engineers in America should take a back seat to promoting quality. “The fact there may be X, Y or Z number of [science and engineering graduates] floating around, doesn’t necessarily speak to the question of does that represent the actual high level high skill innovative talent American industries are looking for,” he said.

Related Posts:

China’s Economic Science Experiment

The Great Chinese Experiment, Horace Freeland Judson, MIT Technology Review. China is betting its economic health on becoming a world leader in the sciences. But will it succeed? This long detailed article provides insight into the challenges, practices and potential for China’s economy and scientific innovation going forward.

“The major scientific program running right now in China is this one, called 97-3 Program,” Professor Cao said. “A major huge program to catch up with the scientific development of the whole world. Started in 1997, March. This program is for basic research. According to the needs of the nation.” Technological applications? Or basic science? “Both,” she said with a sharp nod. The goal is split in two? “Yes,” she said. “I think that the major scientific program is the whole-world program. Not just for China. The second is the urgent requirement for our country’s social and economic development.”

The 97-3 Program concentrates research in six areas, agricultural biotechnology, energy, informatics, natural resources and the environment, population and health, and materials science. Cao’s own concern is with population and health. In this area the research is divided into 20 fields. She took me through them with the aid of a 33-page position paper she had put together in anticipation of my visit. The list is diverse, the projects ambitious. Yet even the most basic research — in stem cells, for example — has been defined in terms of immediate applications.

Information on the China 973 basic research program from the Chinese government’s web site:

Stipulation and implementation of the 973 Program is an important decision of our country to carry out the two development strategies of ” Rejuvenating the country through science and technology ” and ” sustainable development”, as well as to further reinforce basic research and science and technology work. It is an important measure of our country to achieve the great objectives of China’s economic, scientific & technology, and social development by 2010-2050 , to upgrade the sustainable S & T innovative capabilities and to meet the challenges of the new century.

While the engineering credentials of China’s leadership is noted often, it is still interesting to note that China’s 9 senior government officials are all engineers. A Technocrat Riding a Wild Tiger:

When China’s leaders meet with Hu each week in Beijing’s government district, Zhongnanhai, they could spend hours discussing cables, switches, tool-making machines and control devices. That’s because every one of them has a degree in engineering. The president himself, the son of a tea merchant from Jiangsu Province, trained to build hydroelectric power stations, while the others hold degrees in electrical engineering, metallurgy and geology.

Indian Institute of Technology – Female Students

Women at IIT an endangered species, Anjali Joseph, Times of India:

Women students in IIT Mumbai are a tiny percentage. “There are 34 girls and over 500 boys in our year,” says first year civil engineering student Vidushi Jain.

‘Women engineers are on increase’, Express India:

There is a ‘spectacular’ increase in the number of girls entering engineering courses in the country for the last three and a half decades but the northern India has still to catch up, Prof S P Sukhatme, former chairman, Atomic Energy Regulatory Board, said.

From a mere one girl student, who was admitted at the University Department of Chemical Technology, Mumbai, in early 1970s, the number of girls joining engineering colleges has steadily increased and in 2005 it stands at 15 per cent of the total admission, Sukhatme said.

The women engineers were mostly specialised in electrical civil, computer and information technology, it added.

The revolution in women joining engineering courses was witnessed mostly in the southern states starting with Kerala, Andhra Pradesh, Tamil Nadu and Karnataka, ‘the northern India with an exception of Delhi, has to improve its position’.

Indian Institute of Technology – Bombay

The Innovation Agenda

Democrat’s are proposing an Innovation Agenda, including:

Educate 100,000 new scientists, engineers, and mathematicians in the next four years by proposing a new initiative, working with states, businesses, and universities, to provide scholarships to qualified students who commit to working in the fields of innovation.

Place a highly qualified teacher in every math and science K-12 classroom by offering upfront tuition assistance to talented undergraduates and by paying competitive salaries to established teachers working in the fields of math and science; institute a “call to action” to professional engineers and scientists, including those who have retired, to join the ranks of our nation’s teachers.

Create a special visa for the best and brightest international doctoral and postdoctoral scholars in science, technology, engineering and mathematics.

Make college tuition tax-deductible for students studying math, science, technology, and engineering.

They also propose doubling the funding for the National Science Foundation. Making promises about what you will do is much different than actually doing something: lets see what actually happens.

Currently the United States has over $8,000,000,000,000 (that is over $8 trillion – see current count) in debt (increasing by over $400 Billion a year). That brings every person’s share to over $27,000. Given that, it seems reckless to just add spending without either cutting something else or increasing taxes and I don’t see those details in the innovation agenda. Of course, my opinion on that being reckless may not be shared by a majority choosing to spend more money – after all they have been adding to that debt at a record pace the last few years.

To me, the most realistic federal action, given the role of the federal government (k-12 education is primarily a state and local responsibility) is the scholarship proposal but lets see what actually happens. In July we posted about proposed Science and Engineering Fellowships Legislation (which also seems like a good idea). We have not been able to find out about any progress on that legislation. From the November AAAS S&T newsletter:

Meanwhile, across the Capitol, Senators Joe Lieberman (D-CT) and John Ensign (R-NV) are currently drafting bipartisan legislation to implement a series of policies based on the “National Innovation Initiative” report from the Council on Competitiveness. The legislation, which the senators originally planned to introduce in September, has reportedly been delayed by lack of agreement on its immigration provisions.

I am not certain whether the legislation being worked on includes the fellowships or not (though I would guess that it does).