Tag Archives: engineering education

Another Survey Shows Engineering Degree Results in the Highest Pay

The PayScale salary survey looked at both starting and mid career salary. Engineering topped both measures. Of the top 10 mid career salaries, 7 were engineering degrees – including the top 4. The survey is based upon data for full-time employees in the United States who possess a Bachelor’s degree and no higher degrees and have majored in the subjects listed above.

The top 11 paying degrees are:

Highest Paid Undergrad College Degrees
Degree Starting Median Salary Mid-Career Median Salary
Aerospace Engineering $59,600 $109,000
Chemical Engineering $65,700 $107,000
Computer Engineering $61,700 $105,000
Electrical Engineering $60,200 $102,000
Economics $50,200 $101,000
Physics $51,100 $98,800
Mechanical Engineering $58,900 $98,300
Computer Science $56,400 $97,400
Industrial Engineering $57,100 $95,000
Environmental Engineering $53,400 $94,500
Statistics $48,600 $94,500

Related: Engineering Graduates Paid Well Again in 2008High Pay for Engineering Graduates in 2007Engineering Graduates Get Top Salary Offers in 2006posts on science and engineering careersposts on engineering education

Research findings Contradict Myth of High Engineering Dropout Rate

Research findings suggest that, contrary to popular belief, engineering does not have a higher dropout rate than other majors and women do just as well as men, information that could lead to a strategy for boosting the number of U.S. engineering graduates.

“Education lore has always told us that students – particularly women – drop out of undergraduate engineering programs more often than students in other fields,” said Matthew Ohland, an associate professor in Purdue University’s School of Engineering Education. “Well, it turns out that neither is true. Engineering programs, on average, retain just as many students as other programs do, and once women get to college they’re just as likely to stick around in engineering as are their male counterparts.”

The research also shows that hardly any students switch to engineering from other majors, pointing to a potential strategy for increasing the number of U.S. engineering graduates, Ohland said.

“A huge message in these findings is that engineering students are amazingly like those in other disciplines, but we need to do more to attract students to engineering programs,” he said. “If you look at who graduates with a degree in social sciences, 50 percent of them started in social sciences, and for other sciences it’s about 60 percent. If you look at who graduates with a degree in engineering, however, 93 percent of them started in engineering. The road is narrow for students to migrate into engineering from other majors.”

Findings were drawn largely from a database that includes 70,000 engineering students from nine institutions in the southeastern United States. Ohland manages the database, called the Multiple-Institution Database for Investigating Engineering Development, which followed students over a 17-year period ending in 2005.

Data show that the nine institutions vary dramatically in how well they retain engineering students over eight semesters, ranging from 66 percent to 37 percent. Those findings indicate policies and practices at some institutions may serve to retain students better than those at other institutions.

The findings suggest educators should develop a two-pronged approach to increase the number of engineering graduates: identify which programs best retain students and determine why they are effective, and develop programs and policies that allow students to more easily transfer into engineering from other majors.

Related: S&P 500 CEOs are Engineering GraduatesUSA Under-counting Engineering GraduatesNational Science Board Report on Improving Engineering EducationWomen Choosing Other Fields Over Engineering and MathWebcast: Engineering Education in the 21st Century
Continue reading

Engineering Students Increasing at Universities

Engineering suddenly hot at universities

Across the United States, enrollment in engineering programs has risen to levels not seen in three decades. The recession appears to be one factor, as students and their parents look for dependable careers. But some education officials detect a shift in opinion about the profession itself, as global warming and stem-cell research make fields like chemical and bioengineering more than just wise choices for job-seekers – but fashionable ones, too.

Many students are bringing to engineering a heightened sense of social responsibility and a desire “to go out and make a difference in the world,” says Joseph Helble, dean of the Thayer School of Engineering at Dartmouth College in Hanover, N.H., where enrollment in introductory undergraduate courses is 30 percent above the five-year average.

Nationally, enrollment in undergraduate engineering programs rose 3 percent in 2007 and 4.5 percent 2008, according to the American Association of Engineering Education. Meanwhile, enrollment in masters’ degree programs rose 7 percent in 2007 and 2 percent in 2008. In the fall of 2008, 91,489 masters degree students and 403,193 undergraduates were studying engineering at US universities and colleges.

Skeptics note that engineering remains a low priority for US students: Among the 25 top engineer-producing countries, the United States ranks No. 22 on a per capita basis.

Increased engineering education is good news for future economic growth. Hopefully this trend can continue.

Related: Webcast: Engineering Education in the 21st CenturyMany S&P 500 CEOs are Engineering GraduatesWomen Choosing Other Fields Over Engineering and MathEngineering Education Study DebateScience and Engineering in Global Economics

USA Losing Scientists and Engineers Educated in the USA

The USA continues to lose ground, in retaining the relative science and engineering strength it has retained for the last 50 plus years. As I have said before this trend is nearly inevitable – the challenge for the USA is to reduce the speed of their decline in relative position.

A new open access report, Losing the World’s Best and Brightest, explores the minds of current foreign science and engineering students that are studying in the USA. This is another in the list of reports on similar topics by Vivek Wadhwa and Richard Freeman. And again they point out the long term economic losses the USA is setting up by failing to retain the talent trained at our universities. It is a problem for the USA and a great benefit for countries like India and China.

“Foreign students receive nearly 60% of all engineering doctorates and more than half of all mathematics, computer sciences, physics and economics doctorates awarded in the United States. These foreign nationals end up making jobs, not taking jobs,” said Wadhwa. “They bring insights into growing global markets and fresh ideas. Research has shown that they even end up boosting innovation by U.S. inventors. Losing them is an economic tragedy.”

According to the study’s findings, very few foreign students would like to stay in the United States permanently—only 6% of Indian, 10 percent of Chinese and 15% of Europeans. And fewer foreign students than the historical norm expressed interest in staying in the United States after they graduate. Only 58% of Indian, 54% of Chinese and 40% of European students wish to stay for several years after graduation. Previous National Science Foundation research has shown 68% of foreigners who received science and engineering doctorates stayed for extended periods of time, including 73% of those who studied computer science. The five-year minimum stay rate was 92% for Chinese students and 85% for Indian students.

The vast majority of foreign student and 85% of Indians and Chinese and 72% of Europeans are concerned about obtaining work visas. 74% of Indians, 76% of Chinese, and 58% of Europeans are also worried about obtaining jobs in their fields. Students appear to be less concerned about getting permanent-resident visas than they are about short-term jobs. Only 38% of Indian students, 55% of Chinese, and 53% of Europeans expressed concerns about obtaining permanent residency in the USA.

On the tonight show yesterday, President Obama said

we need young people, instead of — a smart kid coming out of school, instead of wanting to be an investment banker, we need them to decide they want to be an engineer, they want to be a scientist, they want to be a doctor or a teacher.

And if we’re rewarding those kinds of things that actually contribute to making things and making people’s lives better, that’s going to put our economy on solid footing. We won’t have this kind of bubble-and-bust economy that we’ve gotten so caught up in for the last several years.

Eric Schmidt, Google CEO, recently expressed his frustration with the policies discouraging science and engineering graduates staying in the USA after they complete their education.

That is a brilliant [actually not brilliant at all] strategy take the best people hire them in American universities and then kick them out” It happens. “Its shocking.” It happens. “I know we are fighting against it.” “We America remain, by far the place of choice for education, particularly higher education.”

Related: Invest in Science for a Strong EconomyScience, Engineering and the Future of the American EconomyUSA Under-counting Engineering GraduatesLosing scientists and engineers will reduce economic performance of the USADiplomacy and Science Research

Carnegie Foundation Calls for Overhaul of Engineering Education

Yet another call for the overhaul of engineering eduction. This time in a Carnegie Foundation Report

The nation’s engineering schools are using outdated educational practices that focus too heavily on imparting technical knowledge and do not do enough to prepare undergraduate students for the profession

in the midst of worldwide transformation of the engineering profession, undergraduate engineering programs in the United States continue to approach problem-solving and knowledge acquisition in an outdated manner. Moreover, engineering programs’ solution to improving the education they offer has been simply to add more courses, rather than reconsidering the design of their programs.

Instead of having a “jam-packed curriculum focused on technical knowledge,” engineering programs should be doing more to help students develop analytical reasoning, practical skills, and professional judgment, the report says.

“We are calling for a new model that will involve fundamentally rethinking the role and even the makeup of the faculty,”

A summary is available online and worth reading for those interested in undergraduate engineering education. I question the wisdom of a foundation urging innovation and then telling people to buy order their book to lean more. If a foundation wants to drive change today, I would think you do so by making material available online easily. Obviously they disagree.

Related: William Wulf Webcast on Engineering Education in the 21st CenturyEducating the Engineer of 2020: NAE ReportReforming Engineering Education by NAEApplied Engineering EducationInnovative Science and Engineering Higher EducationEducating Engineers for 2020 and BeyondToward a More Open Scientific Culture

Hands-on Engineering Education

Hands-on programs convey engineering’s cool factor

For starters, we must inspire them by spreading awareness of programs like FIRST, the Infinity Project, Project Lead the Way and others that move learning from the traditional lecture-style, textbook-based environment to a more hands-on experience that actively involves students in their own learning process and promotes the creative thinking, teamwork and problem-solving skills essential in the 21st-century workplace. These hands-on programs help students see the real difference they can make through a career in engineering.

So what are you doing to address the engineering crisis? Today’s engineers can be the voice of change for tomorrow’s students. We challenge you to ask your school about implementing one of these programs in its math or science curriculum. Volunteer with your local FIRST team, or volunteer in the classroom to help teachers implement project-based curricula. Talk with your colleagues about the best way to educate engineers.

We also highly recommend that you personally mentor a student so a new generation will see firsthand how engineering really does help change our world on every level.

Related: posts on engineering educationTinker School: Engineering CampFun k-12 Science and Engineering LearningWhat Kids can Learn – Hands-on High School Engineering Education in MinnesotaQubits Construction Toy

NSF Funding for Engineering Education, Curriculum, and Infrastructure

The Innovations in Engineering Education, Curriculum, and Infrastructure (IEECI) program supports research which addresses four aspects of engineering education: (1) how students best learn the ideas, principles, and practices to become creative and innovative engineers, and how this learning is measured (2) how application of cyberlearning resources of networked computing and communication, interactive visualization capabilities, and well designed user interfaces can be used to develop easily transportable tools and systems with low barriers to adoption which significantly improve learning, (3) integration of sustainability into engineering education, and (4) future directions of U.S. engineering doctoral programs.

Two types of awards will be supported: Expansion Projects (approximately 10 grants are anticipated) will only be available for area (1), Innovations in Teaching and Learning. Exploratory Projects (25-30 grants are anticipated) will be available in areas (2-4).

Anticipated Funding Amount: The total anticipated funding in fiscal year 2009 is $8,500,000. Expansion Projects will be funded at a level of up to $400,000. Exploratory Projects will be funded at a level up to $150,000, but exploratory projects involving multiple universities may apply for grants up to $200,000.

Full proposals are due by 11 March 2009.

Related: $92 Million for Engineering Research CentersWorldwide Science and Engineering Doctoral Degree DataNSF Graduate Research Fellows 2008House Testimony on Engineering EducationWebcast: Engineering Education in the 21st Century

High School Students to Intern in Engineering

Pasco high school students to work as interns in engineering

Five area manufacturers announced Tuesday that they will join forces with River Ridge High’s new engineering career academy, which opens in fall 2009, to provide students work opportunities while they are still in school.

“The idea is to start a program of internships starting in the 10th grade,” said Wahnish, who presents the idea to the Florida Engineering Society today.

By the time graduation rolls around, students will have had three six-week apprenticeships and received industry certifications in computer-assisted design and other applications. They also will be ready to go to work or enroll in a university program. Even those who go to work still would attend college at least two days a week.

Related: Engineering Internship OpeningsSummer Jobs for Smart Young MindsToyota Cultivating Engineering TalentInternships Increasingly Popularcareers in science and engineering

Britain’s Doctors of Innovation

photo of Susannah FlemmingSusannah Fleming, a PhD student at the University of Oxford life sciences interface doctoral training centre. She is developing a monitoring system to assess children when they first present to medical care. Source

Minister of State for Science and Innovation, Lord Drayson, announced the £250million (about $370 million) initiative which will create 44 training centres across the UK and generate over 2000 PhD students. They will tackle some of the biggest problems currently facing Britain such as climate change, energy, our ageing population, and high-tech crime.

17 of the centers will put specific emphasis on integrating industrial and business skills with the PhD education. This approach to training has been extensively piloted by EPSRC through a small number of thriving Engineering Doctorate Centres and Doctoral Training Centres in Complexity Science, Systems Biology and at the Life Sciences Interface. This new investment builds on the success of these and will establish a strong group of centres which will rapidly establish a pre-eminent international reputation for doctoral training.

The multidisciplinary centres bring together diverse areas of expertise to train engineers and scientists with the skills, knowledge and confidence to tackle today’s evolving issues. They also create new working cultures, build relationships between teams in universities and forge lasting links with industry.

As I have said before I think countries are smart to invest in their science and technology futures. In fact I believe creating centers of science and technology excellence is a key to future economic wealth.

Full press release: £250 Million to Create New Wave of Scientists and Engineers for Britain

Related: UK Science and Innovation GrantsUK Science and Research FundingNew Engineering School for EnglandBasic Science Research FundingBest Research University Rankings, 2008 (UK second to USA)Britain’s big challenges will be met by doctors of innovation

Documentary on 5 Women Majoring in Science and Math at Ohio State

In the clip, Jennifer Jones, a civil engineering student who talks about her challenges and determination to overcome obstacles in her honors program at Ohio State University. The clip is from Gender Chip Project, a documentary following 5 women majoring in the sciences, engineering and math at Ohio State University.

Related: Women Working in ScienceWomen Choosing Other Fields Over Engineering and MathGirls in Science and EngineeringFixing Engineering’s Gender Gap