Tag Archives: Engineering

Why Planes Need to Avoid Fine Volcanic Ash

Volcanic ash: why it’s bad for planes

Aircraft avoid any airspace that has volcanic ash in it for a simple reason: the ash can wreck the function of propeller or jet aircraft, because it is so fine [less than 2mm in diameter, and some as fine as 6 microns] that it will invade the spaces between rotating machinery and jam it – the silica melts at about 1,100C and fuses on to the turbine blades and nozzle guide vanes (another part of the turbine assembly), which in modern aircraft operate at 1,400C.

That, in turn, can be catastrophic – as the crew of two aircraft, including a British Airways Boeing 747, discovered in 1982 when they flew through an ash cloud from the Galunggung volcano in Indonesia. On both planes, all four engines stopped; they dived from 36,000ft (11km) to 12,000ft before they could restart them and make emergency landings.

The Icelandic plume has been thrown to between 6km and 11km into the atmosphere – exactly the height that aircraft would be flying.

Passengers on the BA flight that hit the cloud in 1982 said the engines looked unusually bright: soon after all four flamed out. “I don’t believe it – all four engines have failed!” said the flight engineer. The crew were prepared to ditch, and the captain told the passengers: “Ladies and gentlemen, this is your captain speaking. We have a small problem. All four engines have stopped. We are doing our damnedest to get them under control. I trust you are not in too much distress.”

Luckily, three of the engines could be restarted. The plane landed safely, and nobody was injured.

Related: Why Planes Fly: What They Taught You In School Was WrongSuccessful Emergency Plane Landing in the Hudson RiverEngineering Quiet, Efficient PlanesEngineering the Boarding of Airplanes

Solar-Powered Desalination

Solar-Powered Desalination

Saudi Arabia meets much of its drinking water needs by removing salt and other minerals from seawater. Now the country plans to use one of its most abundant resources to counter its fresh-water shortage: sunshine.

KACST’s main goal is to reduce the cost of desalinating water. Half of the operating cost of a desalination plant currently comes from energy use, and most current plants run on fossil fuels.

Reducing cost isn’t the only reason that people have dreamed of coupling renewable energy with desalination for decades, says Lisa Henthorne, a director at the International Desalination Association. “Anything we can do to lower this cost over time or reduce the greenhouse gas emissions associated with that power is a good thing,” Henthorne says. “This is truly a demonstration in order to work out the bugs, to see if the technologies can work well together.”

Saudi Arabia, the top desalinated water producer in the world, uses 1.5 million barrels of oil per day at its plants, according to Arab News.

In a concentrated PV system, lenses or mirrors focus sunlight on ultra-efficient solar cells that convert the light into electricity. The idea is to cut costs by using fewer semiconductor solar cell materials. But multiplying the sun’s power by hundreds of times creates a lot of heat. “If you don’t cool [the device], you end up overheating the circuits and killing them,” says Sharon Nunes, vice president of IBM Big Green Innovations. IBM’s solution is to use a highly conducting liquid metal–an indium gallium alloy–on the underside of silicon computer chips to ferry heat away. Using this liquid metal, the researchers have been able to concentrate 2,300 times the sun’s power onto a one-square-centimeter solar device. That is three times higher than what’s possible with current concentrator systems, says Nunes.

Finding good desalination solution could help many other locations (including southern California). But there is still a long way to go.

Related: Agricultural Irrigation with Salt WaterCheap Drinking Water From Seawater

HP Makes Progress on Revolutionary Memristors

H.P. Sees a Revolution in Memory Chip

Memristor-based systems also hold out the prospect of fashioning analog computing systems that function more like biological brains, Dr. Chua said.

“Our brains are made of memristors,” he said, referring to the function of biological synapses. “We have the right stuff now to build real brains.”

In an interview at the H.P. research lab, Stan Williams, a company physicist, said that in the two years since announcing working devices, his team had increased their switching speed to match today’s conventional silicon transistors. The researchers had tested them in the laboratory, he added, proving they could reliably make hundreds of thousands of reads and writes.

That is a significant hurdle to overcome, indicating that it is now possible to consider memristor-based chips as an alternative to today’s transistor-based flash computer memories, which are widely used in consumer devices like MP3 players, portable computers and digital cameras.

“Not only do we think that in three years we can be better than the competitors,” Dr. Williams said. “The memristor technology really has the capacity to continue scaling for a very long time, and that’s really a big deal.”

Related: Demystifying the MemristorHow We Found the Missing MemristorSelf-assembling Nanotechnology in Chip Manufacturing

Next steps for Google’s Experimental Fiber Network

Think big with a gig: Google’s experimental fiber

Universal, ultra high-speed Internet access will make all this and more possible. We’ve urged the FCC to look at new and creative ways to get there in its National Broadband Plan – and today we’re announcing an experiment of our own.

We’re planning to build and test ultra high-speed broadband networks in a small number of trial locations across the United States. We’ll deliver Internet speeds more than 100 times faster than what most Americans have access to today with 1 gigabit per second, fiber-to-the-home connections. We plan to offer service at a competitive price to at least 50,000 and potentially up to 500,000 people.

Next steps for our experimental fiber network

So what’s next? Over the coming months, we’ll be reviewing the responses to determine where to build. As we narrow down our choices, we’ll be conducting site visits, meeting with local officials and consulting with third-party organizations. Based on a rigorous review of the data, we will announce our target community or communities by the end of the year.

Of course, we’re not going to be able to build in every interested community — our plan is to reach a total of at least 50,000 and potentially up to 500,000 people with this experiment. Wherever we decide to build, we hope to learn lessons that will help improve Internet access everywhere.

This is another great idea from Google. Not only to push forward the much poorer internet connectivity those in the USA have than other countries but it will hopefully lead to some real engineering breakthroughs. And it is a smart move to increase Google’s potential income – a better internet experience (for users) will likely help Google quite a bit.

Related: Google’s Underwater CablesGoogle Server Hardware DesignChina’s Next Generation InternetNet Neutrality: This is serious

Basketball Padding

Basketball used to be considered a non-contact sport. Now more and more college and pro players are wearing padding. March Madness, this year with more padding

Plumlee and dozens of other college basketball players wear compression shirts and shorts dotted with foam and plastic shock-absorbing pads under their uniforms. There are also padded sleeves for the elbows and knees. In the past few years players have started to wear this layer of protective gear meant to feel like a second-skin in a sport that has bigger, faster and stronger athletes than ever.

“Some of the things you’ll see like these products, a lot of them tend to be more fads that come and go,” he said. “But anything that comes down over the edge of a bony prominence, or on the knee, makes sense. For the ribs — there’s cartilage that is a natural shock absorber so I don’t know how truly affective that piece might be.”

Purchase: McDavid knee and elbow padsMcDavid Hex Power Shooter Arm SleeveHexpad Thudd with Extended Thigh

Related: Teen Goalie Designs Camouflage PadsEngineering Basketball FlopEngineering A Golf SwingThe Glove, Engineering Coolness

Engineering Mosquitoes to be Flying Vaccinators

Mosquitoes Engineered Into Flying Vaccinators by Emily Singer

Researchers in Japan have transformed mosquitoes into vaccine-carrying syringes by genetically engineering the insects to express the vaccine for leishmaniasis–a parasitic disease transmitted by the sandfly–in their saliva. According to a study in Insect Molecular Biology, mice bitten by these mosquitoes produced antibodies against the parasite. It’s not yet clear whether the immune response was strong enough to protect against infection.

“Following bites, protective immune responses are induced, just like a conventional vaccination but with no pain and no cost,” said lead researcher Shigeto Yoshida, from the Jichi Medical University in JapanYoshida, in a press release from the journal. “What’s more continuous exposure to bites will maintain high levels of protective immunity, through natural boosting, for a life time. So the insect shifts from being a pest to being beneficial.”

Researchers consider the project more of a proof of principle experiment than a viable public health option, at least for now.

Very cool.

Related: New and Old Ways to Make Flu VaccinesTreated Mosquito Nets Prevent Malariare-engineering mosquito so they cannot carry disease

IBM Fellow Grady Booch on the Value of Engineering?

In this webcast IBM Fellow Grady Booch discusses the critical role engineering plays in moving society forward. And he explores the history of science and engineering. This interesting webcast would be a good video to show children, or anyone, to bring out the desire to study engineering and encourage them to study so they can join the many engineers shaping our world and our future.

Related: What is an Engineer?Engineer Tried to Save His Sister and Invented a Breakthrough Medical DeviceThe Engineer That Made Your Cat a PhotographerEngineers Should Follow Their Hearts

Innovation, America and Engineering: NAE Grand Challenges Summit

Innovation, America and Engineering: NAE Grand Challenges Summit in Raleigh, North Carolina:

Friday morning in Raleigh, a group of engineers from industry, academia and even government met to discuss the threat of America losing its global lead in innovation. The panel discussion was part of a Summit on the National Academy of Engineering Grand Challenges

Jeff Wadsworth, CEO and president of Battelle Memorial Institute, noted that high school graduation rates have fallen from about 86 percent in the Baby Boomer generation to about 72 percent today. He compared that to a 96 percent graduation rate in Denmark, 92 percent in Japan and the fact that China graduates three engineering students for every one that we do. It’s not news that international competition is stiffening against us, but the statistics he presented about how the U.S. measures up to foreign countries in K-12 metrics was gut-wrenching.

“Our historic lead in secondary education has disappeared,” Wadsworth said. “And as a leader of a large organization, I worry about education.”

Another panelist, Senator Ted Kaufman (D-Delaware) said the country was at a critical point in history. “We are in an economic war,” he said. “The future of our country rests on our ability to use STEM to solve problems.” Kauffman is the only sitting senator in Congress to have worked in the engineering field, and he repeatedly drummed out a message that policy could drive a solution to the STEM crisis.

A third panelist – John Chambers, chairman and CEO of CISCO – said he believed changing teaching methods in K-12 settings to be more collaborative, projects-oriented and skills-mastery oriented would be a good starting point.

the deans of the engineering colleges at both Duke and NC State universities announced today a new nationwide program targeting attracting school-aged children to the STEM fields. The Grand Challenge K-12 Partners Program will lean on engineering colleges throughout the U.S. to be resource hubs for K-12 students and teachers in their region.

Three more NAE Grand Challenge Summits are scheduled to take place next month, in Phoenix, Chicago and Boston. A fourth is scheduled for Seattle in May.

The importance of innovation and engineering education to long term economic success is one thing I believe strongly in and have written about here: Engineering Economic Benefits, Techonolgy Innovation Global Economy Changing, Centers of Technical Excellence and Economic Power. And is one reason I work for the American Society of Engineering Education (this blog is my own and not associated with ASEE).

Related: USA Losing Scientists and Engineers Educated in the USAInvest in Science for a Strong Economy

Engineering Majors Hold 8 of Top 10 Highest Paid Majors

In August, employers responding to a NACE survey reported plans to trim their college hiring, hiring 7% for 2010 graduates from 2009. In addition, just 29% of those employers said they would increase their starting salary offers for the Class of 2010.

Most, but not all majors, experienced salary decreases. In fact, as a group, graduates with computer-related degrees (computer programming, computer science, computer systems analysis, and information sciences/systems) posted a 6.1% increase – the highest increase reported, which pushed their average up from $56,128 to $59,570. Among those earning a computer science degree, the average rose 4.8% to $61,205.

As a whole, engineering graduates also fared well. Their average salary offer as a group is up by 1.2% to $59,245. Although that increase is modest, engineering majors account for eight of 10 top-paid bachelor’s degrees in the Winter 2010 Salary Survey.

Major Average Salary Offer
Petroleum Engineering

$86,220

Chemical Engineering

$65,142

Mining & Minteral Engineering (incl. geological)

$64,552

Computer Science

$61,205

Computer Engineering

$60,879

Electrical/Electronics & Communications Engineering

$59,074

Mechanical Engineering

$58,392

Industrial/Manufacturing Engineering

$57,734

Aerospace/Aeronautical/Astronautical Engineering

$57,231

Information Sciences & Systems

$54,038

Related: Another Survey Shows Engineering Degree Results in the Highest PayS&P 500 CEO’s: Engineers Stay at the TopThe Software Developer Labor MarketMathematicians Top List of Best Occupations
Continue reading