Tag Archives: Engineering

Evolutionary Robotics

Evolutionary Robotics, chapter of Handbook of Robotics, is interesting and includes a good explanation of the difference between evolution and learning:

Evolution and learning (or phylogenetic and ontogenetic
adaptation) are two forms of biological adaptation that differ in space and time. Evolution is a process of selective reproduction and substitution based on the existence of a population of individuals displaying variability at the genetic level. Learning, instead, is a set of modifications taking place within each single individual during its own life time.

Evolution and learning operate on different time scales. Evolution is a form of adaptation capable of capturing relatively slow environmental changes that

might encompass several generations (e.g., the perceptual characteristics of food sources for a given species). Learning, instead, allows an individual to adapt to environmental modifications that are unpredictable at the generational level. Learning might include a variety of mechanisms that produce adaptive changes in an individual during its lifetime, such as physical development, neural maturation, variation of the connectivity between neurons, and synaptic plasticity. Finally, whereas evolution operates on the genotype, learning affects only the phenotype and phenotypic modifications cannot directly modify the genotype.

Recent research showed that teams of evolved robots can: (a) develop robust and effective behavior, (b) display an ability to differentiate their behavior so
to better cooperate; (c) develop communication capabilities and a shared communication system.

Related: What are Genetic Algorithms?Evolutionary DesignLaboratory of Intelligent SystemsRobot with Biological Brainposts on robotics

Keeping Out Technology Workers is not a Good Economic Strategy

The barriers between countries, related to jobs, are decreasing. Jobs are more international today than 20 years ago and that trend will continue. People are going to move to different countries to do jobs (especially in science, engineering and advanced technology). The USA has a good market on those jobs (for many reasons). But there is nothing that requires those jobs to be in the USA.

The biggest impact of the USA turning away great scientists and engineers will be that they go to work outside the USA and increase the speed at which the USA loses its place as the leading location for science, engineering and technology work. This is no longer the 1960’s. Back then those turned away by the USA had trouble finding work elsewhere that could compete with the work done in the USA. If the USA wants to isolate ourselves (with 5% of the population) from a fairly open global science and engineering job market, other countries will step in (they already are trying, realizing what a huge economic benefit doing so provides).

Those other countries will be able to put together great centers of science and engineering innovation. Those areas will create great companies that create great jobs. I can understand wanting this to be 1960, but wanting it doesn’t make it happen.

You could go even further and shut off science and engineering students access to USA universities (which are the best in the world). That would put a crimp in plans for a very short while. Soon many professors would move to foreign schools. The foreign schools would need those professors, and offer a great deal of pay. And those professors would need jobs as their schools laid off professors as students disappeared. Granted the best schools and best professors could stay in the USA, but plenty of very good ones would leave.

I just don’t think the idea of closing off the companies in the USA from using foreign workers will work. We are lucky now that, for several reasons, it is still easiest to move people from Germany, India, Korea, Mexico and Brazil all to the USA to work on advanced technology projects. The advantage today however, is much much smaller than it was 30 years ago. Today just moving all those people to some other location, say Singapore, England, Canada or China will work pretty well (and 5 years from now will work much better in whatever locations start to emerge as the leading alternative sites). Making the alternative of setting up centers of excellence outside the USA more appealing is not a good strategy for those in the USA wanting science, engineering and computer programming jobs. We should instead do what we can to encourage more companies in the USA that are centralizing technology excellence in the USA.

Comment on Reddit discussion.

Related: Science and Engineering in Global EconomicsGlobal technology job economyCountries Should Encourage Immigration of Technology WorkersThe Software Developer Labor MarketWhat Graduates Should Know About an IT CareerRelative Engineering Economic PositionsChina’s Technology Savvy LeadershipEducation, Entrepreneurship and ImmigrationThe Future is EngineeringGlobal Technology Leadership

Google Server Hardware Design

Ben Jai, Google Server Platform Architect, discusses the Google server hardware design. Google has designed their own servers since the beginning and shared details this week on that design. As we have written previously Google has focused a great deal on improving power efficiency.

Google uncloaks once-secret server

Google’s big surprise: each server has its own 12-volt battery to supply power if there’s a problem with the main source of electricity. The company also revealed for the first time that since 2005, its data centers have been composed of standard shipping containers–each with 1,160 servers and a power consumption that can reach 250 kilowatts.

Efficiency is another financial factor. Large UPSs can reach 92 to 95 percent efficiency, meaning that a large amount of power is squandered. The server-mounted batteries do better, Jai said: “We were able to measure our actual usage to greater than 99.9 percent efficiency.”

Related: Data Center Energy NeedsReduce Computer WasteCost of Powering Your PCCurious Cat Science and Engineering Search

Cardiac Cath Lab: Innovation on Site

photo of Cath LabPhoto of John Cooke at the Cardiac Catheterisation Labs at St. Thomas’ hospital in London

I manage several blogs on several topics that are related. Often blog posts stay firmly in the domain of one blog of the other. Occasionally the topic blurs the lines between the various blogs (which I like). This post ties directly to my Curious Cat Management Improvement Blog. The management principles I believe in are very similar to engineering principles (no surprise given this blog). And actual observation in situ is important – to understand fully the situation and what would be helpful. Management relying on reports instead of seeing things in action results in many poor decisions. And engineers doing so also results in poor decisions.

Getting to Gemba – a day in the Cardiac Cath Lab by John Cooke

I firmly believe that it is impossible to innovate effectively without a clear understanding of the context and usage of your final innovation. Ideally, I like to “go to gemba“, otherwise known as the place where the problem exists, so I can dig for tacit knowledge and observe unconscious behaviours.

I didn’t disgrace myself and I’ve been invited back for another day or so. What did I learn that I didn’t know before? The key things I learnt were:

  • the guide wire isn’t just a means of steering the catheter into place as I thought. It is a functional tool in it’s own right
  • Feel is really critical to the cardiologist
  • There is a huge benefit in speeding up procedures in terms of patient wellbeing and lab efficiency
  • Current catheter systems lack the level of detection capability and controllability needed for some more complex PCIs (Percutaneous Cardiac Interventions)

The whole experience reminded me that in terms of innovation getting to gemba is critical. When was the last time you saw your products in use up-close and personal?

Related: Jeff Bezos Spends a Week Working in Amazon’s Kentucky Distribution CenterToyota Engineering Development ProcessMarissa Mayer on Innovation at GoogleBe Careful What You MeasureS&P 500 CEOs are Often Engineering GraduatesExperiment Quickly and Often

Personal Robots Being Developed in Japan

Robots Lend a Hand in Japan by Tony McNicol

The most numerous, and certainly the most high-profile, service robots in Japan are for entertainment. Ever since 2000 when Honda amazed the world with its walking humanoid Asimo, other Japanese companies have been fast on their heels. Notable examples include Mitsubishi’s lemon yellow home helper Wakamaru, Toyota’s trumpet-playing humanoid, and Murata Manufacturing’s bicycle-riding robot. Although such impressive PR robots are too expensive to sell, Japan also has popular home entertainment robots. The best known to date is Sony’s robot pooch Aibo, which was produced between 1999 and 2006.

Another potential role for service robots is dealing with Japan’s imminent demographic crisis. A low birthrate and unrivalled longevity mean the number of elderly Japanese will increase dramatically over the coming decades. In the absence of mass immigration (which Japan has been keen to avoid) a severe shortage of caregivers seems inevitable. Some people believe robots are the answer. Takanori Shibata, a senior research scientist at the National Institute of Advanced Industrial Science and Technology, says that robot caregivers can be divided into physical service and mental service robots. The former are designed to help with tasks such as washing or carrying elderly people, although given the limitations of current technology, not to mention safety concerns, they are still quite a long way from commercialization.

Mental service robots on the other hand are already here. One of the best known is Paro, an interactive robot seal designed by Shibata himself. The sophisticated robot can remember its name and change its behavior depending on how it is treated. It has been extensively tested in homes for elderly people and in hospitals. In 2002 the Guinness Book of Records named Paro as “the world’s most therapeutic robot.” The robot reminds patients of the pets or children they once cared for, says Shibata. “Paro is a kind of trigger to provoke something in the mind of the owner,” he suggests. About 1,000 of the robots, which cost about 3,000 dollars, have been produced since 2004. Overseas sales will begin shortly.

The effective use of personal robots finally seems to be fairly close at hand. Undoubtedly the initial attempts will seem limited. See Clayton Christsen’s ideas on disruptive innovation for an understanding of how I think the adoption will play out. Robots will be poor substitutes for other alternatives but as we experiment with how to make them effective we will figure out niches for which they work well. It is hard to predict what will happen but my feeling is we may finally be a the point where real uses of personal robots stat to take hold and then the growth may surprise us.

Related: Toyota Winglet – Personal TransportationA Robot to Clean Your RoomRobot Finds Lost Shoppers and Provides DirectionsThe Robotic DogToyota Partner RobotsRobotic Prosthetic Arms for People

USA Losing Scientists and Engineers Educated in the USA

The USA continues to lose ground, in retaining the relative science and engineering strength it has retained for the last 50 plus years. As I have said before this trend is nearly inevitable – the challenge for the USA is to reduce the speed of their decline in relative position.

A new open access report, Losing the World’s Best and Brightest, explores the minds of current foreign science and engineering students that are studying in the USA. This is another in the list of reports on similar topics by Vivek Wadhwa and Richard Freeman. And again they point out the long term economic losses the USA is setting up by failing to retain the talent trained at our universities. It is a problem for the USA and a great benefit for countries like India and China.

“Foreign students receive nearly 60% of all engineering doctorates and more than half of all mathematics, computer sciences, physics and economics doctorates awarded in the United States. These foreign nationals end up making jobs, not taking jobs,” said Wadhwa. “They bring insights into growing global markets and fresh ideas. Research has shown that they even end up boosting innovation by U.S. inventors. Losing them is an economic tragedy.”

According to the study’s findings, very few foreign students would like to stay in the United States permanently—only 6% of Indian, 10 percent of Chinese and 15% of Europeans. And fewer foreign students than the historical norm expressed interest in staying in the United States after they graduate. Only 58% of Indian, 54% of Chinese and 40% of European students wish to stay for several years after graduation. Previous National Science Foundation research has shown 68% of foreigners who received science and engineering doctorates stayed for extended periods of time, including 73% of those who studied computer science. The five-year minimum stay rate was 92% for Chinese students and 85% for Indian students.

The vast majority of foreign student and 85% of Indians and Chinese and 72% of Europeans are concerned about obtaining work visas. 74% of Indians, 76% of Chinese, and 58% of Europeans are also worried about obtaining jobs in their fields. Students appear to be less concerned about getting permanent-resident visas than they are about short-term jobs. Only 38% of Indian students, 55% of Chinese, and 53% of Europeans expressed concerns about obtaining permanent residency in the USA.

On the tonight show yesterday, President Obama said

we need young people, instead of — a smart kid coming out of school, instead of wanting to be an investment banker, we need them to decide they want to be an engineer, they want to be a scientist, they want to be a doctor or a teacher.

And if we’re rewarding those kinds of things that actually contribute to making things and making people’s lives better, that’s going to put our economy on solid footing. We won’t have this kind of bubble-and-bust economy that we’ve gotten so caught up in for the last several years.

Eric Schmidt, Google CEO, recently expressed his frustration with the policies discouraging science and engineering graduates staying in the USA after they complete their education.

That is a brilliant [actually not brilliant at all] strategy take the best people hire them in American universities and then kick them out” It happens. “Its shocking.” It happens. “I know we are fighting against it.” “We America remain, by far the place of choice for education, particularly higher education.”

Related: Invest in Science for a Strong EconomyScience, Engineering and the Future of the American EconomyUSA Under-counting Engineering GraduatesLosing scientists and engineers will reduce economic performance of the USADiplomacy and Science Research

Home Engineering: Gaping Hole Costume

photo of gaping hole Halloween costume by Evan Booth, 2006

This great Halloween costume by Evan Booth shows what a bit of imagination and engineering can do. A projection screen over his stomach displays a live video image of a camera on his back giving the illusion of a gaping hole. Photos via flickr. Very cool.

Related: home engineering postsHome Engineering: Windmill for ElectricityAwesome Cat CamAutomatic Cat FeederEngineering at Home
Continue reading

Very Cool Wearable Computing Gadget from MIT

Pattie Maes presentation at TED shows a very cool prototype for wearable, useful computing spearheaded by Pranav Mistry (who received a standing ovation at TED). It’s a wearable device with a projector that paves the way for profound interaction with our environment.

The prototype of the system cost only $350. The software, created by them, obviously is the key, but how amazing is that, $350 for the hardware used in the prototype! There is a useful web site on the Sixth Sense project.

The SixthSense prototype is comprised of a pocket projector, a mirror and a camera. The hardware components are coupled in a pendant like mobile wearable device. Both the projector and the camera are connected to the mobile computing device in the user’s pocket. The projector projects visual information enabling surfaces, walls and physical objects around us to be used as interfaces; while the camera recognizes and tracks user’s hand gestures and physical objects using computer-vision based techniques.

The software program processes the video stream data captured by the camera and tracks the locations of the colored markers (visual tracking fiducials) at the tip of the user’s fingers using simple computer-vision techniques. The movements and arrangements of these fiducials are interpreted into gestures that act as interaction instructions for the projected application interfaces. The maximum number of tracked fingers is only constrained by the number of unique fiducials, thus SixthSense also supports multi-touch and multi-user interaction.

Related: Awesome Cat CamCool Mechanical Simulation SystemEngineering a Better World: Bike Corn-Shellerposts on cool gadgets

Eric Schmidt on Google, Education and Economics


Eric Schmidt, March 6th, 2009 interview by Charlie Rose:

  • “From our perspective, I think the YouTube acquisition and the Doubleclick acquisition, which are the two large acquisitions we did last year, and the year before, have been phenomenally successful.”
  • He also mentioned the idea of teachers today creating online hubs of information on educational areas, as well as lesson plans. See our Education Resources for Science and Engineering
  • And Flu Trends
  • “We needed the stimulus package, because the stimulus package had, among other things, $20 billion for science and education funding… Real wealth is created by businesses, not by financial engineering, and by businesses that provide new products that solve new problems.”
  • Why do you assume the best students in the world are going to come to America? “Because they choose to come here right now… That is a brilliant [actually not brilliant at all] strategy take the best people hire them in American universities and then kick them out” It happens. “Its shocking.” It happens. “I know we are fighting against it.” “We America remain, by far the place of choice for education, particularly higher education.
  • Technologists as a group tend to be more analytical, more data driven, more personally liberal (more willing to tolerate the differences among people, more global in their focus… [technologists] as a group believe you can literally change the world from technology.”

Related: Eric Schmidt on Management at GoogleEric Schmidt Podcast on Google Innovation and EntrepreneurshipLarry Page and Sergey Brin InterviewMarissa Mayer Webcast on Google InnovationLarry Page on How to Change the World

Electrolyzed Water Replacing Toxic Cleaning Substances

Simple elixir called a ‘miracle liquid’

The stuff is a simple mixture of table salt and tap water whose ions have been scrambled with an electric current. Researchers have dubbed it electrolyzed water

Used as a sanitizer for decades in Russia and Japan, it’s slowly winning acceptance in the United States. A New York poultry processor uses it to kill salmonella on chicken carcasses. Minnesota grocery clerks spray sticky conveyors in the checkout lanes. Michigan jailers mop with electrolyzed water to keep potentially lethal cleaners out of the hands of inmates.

In Santa Monica, the once-skeptical Sheraton housekeeping staff has ditched skin-chapping bleach and pungent ammonia for spray bottles filled with electrolyzed water to clean toilets and sinks. “I didn’t believe in it at first because it didn’t have foam or any scent,” said housekeeper Flor Corona. “But I can tell you it works. My rooms are clean.”

It turns out that zapping salt water with low-voltage electricity creates a couple of powerful yet nontoxic cleaning agents. Sodium ions are converted into sodium hydroxide, an alkaline liquid that cleans and degreases like detergent, but without the scrubbing bubbles. Chloride ions become hypochlorous acid, a potent disinfectant known as acid water.

“It’s 10 times more effective than bleach in killing bacteria,” said Yen-Con Hung, a professor of food science at the University of Georgia-Griffin, who has been researching electrolyzed water for more than a decade. “And it’s safe.”

There are drawbacks. Electrolyzed water loses its potency fairly quickly, so it can’t be stored long. Machines are pricey and geared mainly for industrial use. The process also needs to be monitored frequently for the right strength.

Very cool use of science: providing a green cleaning agent that is effective.

Related: Clean Clothes Without Soapposts on chemical engineeringiRobot Gutter Cleaning RobotWater From Air