Tag Archives: Engineering

Engineers Rule at Honda

Engineers Rule, 2006

Of all the bizarre subsidiaries that big companies can find themselves with, Harmony Agricultural Products, founded and owned by Honda Motor, is one of the strangest. This small company near Marysville, Ohio produces soybeans for tofu. Soybeans? Honda couldn’t brook the sight of the shipping containers that brought parts from Japan to its nearby auto factories returning empty. So Harmony now ships 33,000 pounds of soybeans to Japan.

Longtime auto analyst John Casesa, who now runs a consulting company, says, “There’s not a company on earth that better understands the culture of engineering.” The strategy has worked thus far. Honda has never had an unprofitable year. It has never had to lay off employees.

I checked and Honda was also profitable in 2007 and 2008 fiscal year (ending in September).

Related: Honda EngineeringAsimo Robot: Running and Climbing StairsThe Google Way: Give Engineers RoomGoogle’s Ten Golden Rules

National Girls Collaborative Project for STEM

The National Girls Collaborative Project for science, technology, engineering, and mathematics (STEM) collaborates with those seeking to increase the participation of girls in STEM feeder activities. The goal is to encourage girls to pursue careers in science, technology, engineering, and math.

Collaboration as a Means to Building Capacity: Results and Future Directions of the National Girls Collaborative Project:

The purpose of the NGCP is to extend the capacity, impact, and sustainability of
existing and evolving girl-serving STEM projects and programs. The NGCP is structured to bring organizations together to compare needs and resources, to share information, and to plan strategically to expand STEM–related opportunities for girls.

Although we are still refining it, the NGCP collaborative model has shown its effectiveness through increased collaboration and minigrant projects with sustained results. As we have described, the success to date of the NGCP in developing collaborations has been demonstrated via data from the collaboration rubric, mini-grant reports, and metrics that show how collaborative activities have increased over the duration of the NGCP projects. As NGCP expands over the next few years to provide regional collaboratives across the entire United States and Puerto Rico, we will continue our assessment of its impact and hope to be able to report its influence on building capacity to attract and retain girls in STEM.

I support programs encouraging STEM activities for girls – and boys. NSF data shows for 2005 shows women outnumbered men in undergraduate degree in science and engineering. For post-graduate degrees men still outnumbering women but that gap has been reducing and seems like it will continue to. And the representations in the workplace seem poised to continue to show a reducing number of men and increasing number of women. Engineering is an example of an area with far more men than women graduating – the imbalance is equivalent to the imbalance the other way for psychology.

Related: Girls Sweep Top Honors at Siemens Competition in Math, Science and TechnologyFIRST Robotics in MinnesotaKids in the Lab: Getting High-Schoolers Hooked on Science

Black and Decker Codeless Lawn Mower Review

photo of Black and Decker cordless lawnmower

My old version of this mower just stopped working and the repair guy said it would cost $250 for a new starter, new battery… So I bought a new one: Black & Decker 19-Inch 24-Volt Cordless Electric Mulching Lawn Mower #CMM1200. He said that the new ones were not as well manufactured. I couldn’t imagine how you could make things worse (it is a simple product and just adopting improvement over the years should be really easy).

But, the starter on this model is horrible. You have to tun this incredibly cheap key in a very poorly designed socket. Fails over 80% of the time. The old model started easily essentially every time. The design was just as you would expect, foolproof. Whatever pointy haired boss approved this design needs to go into another line of work.

The ability of the mower to cope with high grass is very poor – much worse than the previous model. I had a good test at first given the time between my mower breaking and getting the new one. Not often an issue, but still not a good thing.

They had a poor indication of the charge left in the battery previously. They now provide no indication of the charge left. It makes you realize that a poor indication was much better than none.

Battery technology has improved a great deal, and that was one of biggest the weaknesses of the last one. Well they seem to have managed to provide worse battery performance after 5 years of improvement in that technology. Pretty sad.

The bag design is much better than the previous model. You have to assemble it yourself but it is much more sturdy and much better designed – you can replace the fabric and keep the frame. The old model the entire things needed to be replaced if the fabric broke. And given the flimsy design mine broke very early on.
Continue reading

Dean Kamen: Stirling Engines

Dean Kamen: part man, part machine

Conceived in Scotland almost 200 years ago, the Stirling [engine] is a marvel of thermo-dynamics that could help to replace the internal combustion engine – in theory it can turn any source of heat into electricity, in silence and with 100 per cent efficiency. But corporations including Phillips, Ford and Nasa have devoted decades of research, and millions of dollars, to developing the engine, and all retired defeated, having failed to find a way of turning the theoretical principles of the engine into a workable everyday application. Kamen, nevertheless, has spent the past 10 years and, he estimates, up to $40 million working on the problem.

Now he and his engineers have built and tested a range of Stirling engines suitable for mass production that can be run on anything from jet fuel to cow dung. The one in the boot of the small blue car is designed to extend its range and constantly recharge its batteries to make a new kind of hybrid vehicle: one fit for the roads of the 21st century. A Stirling-electric hybrid, Kamen tells me, can travel farther and more efficiently than conventional electric cars; it generates enough power to run energy-hungry devices such as heaters and defrosters that are essential for drivers who, unlike those he calls the ‘tofu heads’ of California, must cope with a cold climate; and even using petrol, the engine runs far cleaner than petrol-electric hybrids such as Toyota’s Prius.

However, Kamen confesses, his new creation isn’t quite finished yet: ‘The Stirling engine’s not hooked up. Which really pisses me off.’

But it could work?

‘It will work,’ he says. ‘Trust me.’

Related: R&D Magazine’s 2006 Innovator of the YearRobotic Prosthetic Arms for People

Monitor-Merrimac Memorial Bridge-Tunnel

photo of Monitor-Merrimac Memorial Bridge-Tunnel photo of Hampton Roads Virginia Bridge-Tunnel

Now that is some cool engineering: a bridge that becomes a tunnel. The Monitor-Merrimac Memorial Bridge-Tunnel is a 4.6 miles (7.4 km) crossing for Interstate 664 in Hampton Roads, Virginia, USA. It is a four-lane bridge-tunnel composed of bridges, trestles, man-made islands, and tunnels under a portion of the Hampton Roads harbor where the James, Nansemond, and Elizabeth Rivers come together in the southeastern portion of Virginia.

If you like this post, please look at our other popular posts, and consider adding our blog feed to your blog reader. Posts such as: Bacteriophages: The Most Common Life-Like Form on Earth, Robot Finds Lost Shoppers and Provides Directions and The Engineer That Made Your Cat a Photographer

It was completed in 1992, after 7 years of construction, at a cost $400 million, and it includes a four-lane tunnel that is 4,800 feet (1,463 m) long, two man-made portal islands, and 3.2 miles (5.1 km) of twin trestle.

Photos by Virginia Department of Transportation. Details from wikipedia. Google satellite view of the bridge-tunnel.

Related: Extreme EngineeringCool Falkirk Wheel Canal LiftThe Dynamics of Crowd Disasters: An Empirical StudyA ‘Chunnel’ for Spain and MoroccoSwiss dig world’s Longest Tunnel

59 MPG Toyota iQ Diesel Available in Europe

image of seating in the toyota iQ

59 MPG Toyota iQ On Sale In Europe, US Plans Unclear

With lower carbon dioxide emissions than the Prius — around 159 grams of CO2 emitted per mile by the 1.0 liter gas engine and 166 g/mile for the diesel version — not only does the iQ deliver on fuel economy, but its straight-up conventional engine is a pollution winner too.

At just about 9.8 feet long, 5.5 feet wide and 4.9 feet tall, Toyota certainly has pulled of a near engineering miracle with the amount of stuff they’ve crammed into this tiny vehicle. Toyota claims the iQ can fit 3 adults and 1 child “comfortably.”

Toyota expects to sell about 80,000 of them a year in Europe.

I own some Toyota stock (and bought a bit more recently) based on their excellent management and production system and the results they have achieved (so I pay attention to what they are doing – plus I own them because they do things I see as wise so it is a self reinforcing dynamic). Business week recently wrote about Ford’s 65 mpg Diesel Car the U.S. Can’t Have.

I owned Ford stock back when they were adopting Deming based management principles but when they dropped those to pursue short sighted goals and poor management practices I sold and bought Toyota (turned out to be a very wise decision – my mistake was holding Ford too long hoping they would realize their mistake).

Related: Toyota Engineering Development ProcessToyota Cultivating Engineering TalentToyota Winglet, Personal TransportationToyota iUnitToyota iQ media kit (lots of details)

Toyota Cultivating Engineering Talent

Toyota has a knack for cultivating engineering talent

Toyota now has more than 1,000 York Township employees dedicated to conducting engineering services on vehicles for the North American market. Early on in its expansion project, the Japanese automaker displayed a canny understanding of how to cultivate talent and acquire engineers fresh out of college.

Toyota established a two-year internship program for recent engineering graduates at schools like the University of Michigan, Michigan State University, Lawrence Technological University and the University of Wisconsin. At the end of the two-year period, the automaker and the employee reach a mutual decision about whether the employee should continue working there.

Bruce Brownlee, senior executive administrator for external affairs for the Toyota Planning Center at the Toyota Technical Center, has said the company generated a “large pipeline” for engineering talent by leveraging the internship program.

Related: Engineering InternshipsToyota Engineering Development ProcessToyota RobotsToyota k-12 Science GrantsToyota Production System (TPS) management blog posts

$92 Million for Engineering Research Centers

photo of Alex Huabg

NSF Launches Third Generation of Engineering Research Centers with Awards Totaling $92.5 Million. Each of the 5 sites will receive will use $18.5 million over five-years. Each center has international university partners and partners in industry.

The NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), based at Iowa State University, seeks to transform the existing petrochemical-based chemical industry to one based on renewable materials.

The NSF Engineering Research Center for Future Renewable Electric Energy Delivery and Management (FREEDM) Systems, based at North Carolina State University, will conduct research to transform the nation’s power grid into an efficient network that integrates alternative energy generation and new storage methods with existing power sources.

The NSF ERC for Integrated Access Networks (CIAN), based at the University of Arizona, will conduct research to create transformative technologies for optical access networks that offer dramatically improved performance and expanded capabilities.

The NSF ERC for Revolutionizing Metallic Biomaterials, based at North Carolina Agricultural and Technical State University, aims to transform current medial and surgical treatments by creating “smart” implants for craniofacial, dental, orthopedic and cardiovascular interventions.

The NSF Smart Lighting ERC, based at Rensselaer Polytechnic Institute, aims to create new solid-state lighting technologies to enable rapid biological imaging, novel modes of communication, efficient displays and safer transportation.

Photo: Alex Huang will lead direct the research of ways to integrate renewable energy sources into the nation’s power grid at North Carolina State University.

Related: $75 Million for 5 New Engineering Research CentersNSF Awards $50 Million for Collaborative Plant Biology ProjectPresidential Early Career Award for Scientists and Engineersposts related to the United States National Science Foundation

Holographic Television on the Way

Ok, there really isn’t much new since I posted that holographic TV is getting closer. But won’t it be cool when I can have one in my house? And you might need to plan for it in your new house addition 🙂 Also, with the economic news lately a good distraction might be useful – Holographic television to become reality

The reason for renewed optimism in three-dimensional technology is a breakthrough in rewritable and erasable holographic systems made earlier this year by researchers at the University of Arizona.

Dr Nasser Peyghambarian, chair of photonics and lasers at the university’s Optical Sciences department, told CNN that scientists have broken a barrier by making the first updatable three-dimensional displays with memory.

“This is a prerequisite for any type of moving holographic technology. The way it works presently is not suitable for 3-D images,” he said. The researchers produced displays that can be erased and rewritten in a matter of minutes.

According to Peyghambarian, they could be constructed as a screen on the wall (like flat panel displays) that shows 3-D images, with all the image writing lasers behind the wall; or it could be like a horizontal panel on a table with holographic writing apparatus underneath.

Peyghambarian is also optimistic that the technology could reach the market within five to ten years. He said progress towards a final product should be made much more quickly now that a rewriting method had been found.

However, it is fair to say not everyone is as positive about this prospect as Peyghambarian. Justin Lawrence, a lecturer in Electronic Engineering at Bangor University in Wales, told CNN that small steps are being made on technology like 3-D holograms, but, he can’t see it being ready for the market in the next ten years.

I would have to say I am with those that think this might take a bit longer to be in place. But I would be glad to be wrong.

Related: Video GogglesOpen Source for LEGO Mindstormsposts on cool gadgetsAwesome Cat Cam

Engineering a Better World: Bike Corn-Sheller

photo of bike maize sheller

More appropriate technology from MIT’s D-Lab.

D-Lab-developed device makes corn processing more efficient

Jodie Wu, an MIT senior in mechanical engineering, spent the summer traveling from village to village in Tanzania to introduce a new system for processing the corn: A simple attachment for a bicycle that makes it possible to remove the kernels quickly and efficiently using pedal power. The device makes processing up to 30 times faster and allows one person to complete the job alone in one day.

The basic concept for the maize-sheller was first developed in Guatemala by an NGO called MayaPedal, and then refined by Wu last semester as a class project in D-Lab: Design, a class taught by Department of Mechanical Engineering Senior Lecturer Amy Smith. Now, thanks to Wu’s efforts, the technology is beginning to make its way around the world.

Thus, the owner of a bicycle, with a small extra investment, can travel from village to village to carry out a variety of useful tasks. A simple bike thereby becomes an ongoing source of income.

Wu refined the corn-sheller system, which was originally designed as a permanent installation that required a bicycle dedicated solely to that purpose, to make it an add-on, like Kiwia’s tools, that could be easily bolted onto an ordinary bike and removed easily.

Photo shows the prototype of the attachment. Engineering that makes a significant difference in people’s lives (especially those that need it the most) is even cooler than the latest high tech gizmos in my opinion. And those new gizmos are cool.

Related: Design for the Unwealthiest 90 PercentAppropriate Technology postsWater Pump Merry-go-RoundNepalese Entrepreneur Success – Tumaini Cycles blog (by