Tag Archives: Engineering

The Glove – Engineering Coolness

photo of The Glove - core control

Cool invention helps tired players bounce back

The device, called the Glove and invented by two Stanford biologists, is used by the Niners during games and at practice for players’ health. But its applications are far broader: from treating stroke and heart attack victims to allowing soldiers to remain in the field longer under intense heat.

It’s also a proven athletic performance enhancer – billed as better than steroids without any ill effects.

“We use the Glove primarily for health reasons,” said Dan Garza, the 49ers’ medical director. “But outside of sports, it has potential for a lot of exciting things. This technology is a much more effective way of cooling the core temperature than what we would typically do – misting, fanning, cold towels, fluids.”

The Glove works by cooling the body from inside out, rather than conventional approaches that cool from outside in. The device creates an airtight seal around the wrist, pulls blood into the palm of the hand and cools it before returning it to the heart and to overheated muscles and organs. The palm is the ideal place for rapid cooling because blood flow increases to the hands (and feet and face) as body temperature rises.

“These are natural mammalian radiators,” said Dennis Grahn, who invented the device with Stanford colleague Craig Heller.

Cool, you can buy your own for only $2,000 🙂 (The Glove used to be called Core Control) High resolution image. Related: Research on Reducing Hamstring InjuriesThe Science of the Football SwerveRandomization in Sportsposts on science and athletics

Toyota Engineering Development Process

Kenji Hiranabe talks about Toyota’s development process (webcast). Kenji shares a presentation he attended earlier this year by Nobuaki Katayama, a former Chief Engineer at Toyota, and the lessons he learned from him.

The webcast takes awhile to get going. If you are impatient you might want to start at the 6 minute mark. Some thoughts from the talk:

  • The Voice of the Customer is diffuse. A strong concept (for a project – new car for example) is very important to focus thought, listening to voice of the customer is important but must use strong concept to avoid losing focus (due to diffuse customer feedback).
  • Honest face to face communication is important. Bad news first – present bad news first [don’t try to hide bad news – my thoughts in brackets, John Hunter].
  • Everyone must think about cost reduction, many efforts add up to big impact [the importance of reducing waste everywhere].
  • benchmark, not to copy others, but to learn from what others do well.

The webcast includes a nice (though short) discussion of agile management in software development and lean manufacturing (the different situation of manufacturing versus software development). Kenji Hiranabe has also translated several agile and lean books into Japanese including Implementing Lean Software Development.

Related: Kenji Hiranabe’s blogMarissa Mayer Webcast on Google InnovationHonda EngineeringEngineering Innovation in Manufacturing and the Economy

Jetsone Jetplane Over English Channel

photo of personal jet wings

We first posted on Yves Rossy’s personal jetpack in 2006. Now he is preparing to fly over the English channel with this jetwings.

The plan is that on or around September 24, Yves will climb into a light aircraft somewhere near Calais with his wing firmly strapped on to his back and a live television crew from the National Geographic Channel filming his every move.

When the plane is at 8,000ft, he will fire up the four little jet engines attached to the underside of the wing and then jump out. In the plane, the wingtips are always folded or Yves would not fit through the door. Once in the open air, he will pull a cord and the two spring-loaded ends will snap open to give him a full wing span of just over eight feet.

He will open up his engines, dive for a few seconds to pick up a speed of around 200mph and then level out at around 5,000ft before flying in a straight line at roughly 115mph to England. As long as the wind is not above 10mph in the opposite direction, he should have enough juice to get him to Kent.

There, he will pull his parachute ripcords and drop safely on to Blighty’s fair shores.

Related: photo from Yves Rossy web siteAlienFly RC Mosquito HelicopterEngineering Quiet, Efficient PlanesMegaflood Created the English Channel

Engineer Uses Gravity

Now Diving: Sir Isaac Newton

On TV, a diver walks out onto a platform. The camera fixes on him. He waits. He leaps. And then — somehow — the camera stays with him as he plunges. In the instant it takes him to break the water’s surface, the picture suddenly cuts to an underwater shot — and we watch in disbelief as the dive culminates in a burst of bubbles.

How do they do it?

Well, there’s a rope. There’s a pulley. And the rope and the pulley work a contraption made out of a pipe. The whole gizmo is based on the brilliant insight that objects fall at the same rate regardless of mass. A Tuscan by the name of Galileo came up with it about 400 years ago; if he were alive, he’d call it cutting edge. And there’s the beauty of it: It’s sophisticated, yes, but only because it’s simple.

Garrett Brown revolutionized the movie business 38 years ago when he invented the Steadicam, a mechanical arm for cameramen that smooths away the jerkiness of hand-held shots. Much later, he came up with the Skycam, which rides a web of wires above the heads of football players. In between, Mr. Brown, 66 years old, got his one-line brief from NBC: “They wanted a camera,” he says, “that stayed with divers, including going underwater with them.”

The falling camera rides a rail on the inside of the pipe. A glass strip runs along the pipe’s full length; the camera takes its picture through the glass. From the diving platform to the water line, the glass is smoky. Below the line, it’s clear, so the camera need not adjust its exposure as it streaks into underwater darkness.

The pipe is caulked. The camera drops through air. “It doesn’t splash into the water,” Mr. Brown said. “That would look horrible.”

The appropriate use of technology is great to see. Applying knowledge well is a key to good engineering.

Related: Using Cameras Monitoring To Aid Conservation EffortsHow Do Wii Game Controllers Work?Bigger Impact: 15 to 18 mpg or 50 to 100 mpg?Awesome Cat Cam

Engineers Should Follow Their Hearts

Steve Wozniak, Apple co-founder is a great engineer and full of wonderful quotes for engineers to take to heart. The autobiography of the Woz is certainly a good read for any engineer. Woz urges engineers to follow their hearts

Wozniak talked about a life driven by his passion for the electronics and computing. And passion can be a more important incentive than money, he said.

“Sometimes when you’re short of resources it forces you to do better work,” he said. To design the Apple’s logic circuitry, “I couldn’t afford an online timeshare computer system. I had to write down ones and zeros (and simulate the computer’s operations). It was all done by hand, never once on a computer.”

He offered his computer designs to HP five times, but they never were interested. “I would not sell something for money without my employer getting a cut of it.”

Related: Interview of Steve WozniakProgrammers at WorkThe Woz SpeaksCurious Cat Science and Engineering books

Huge Ant Nest

[Google broke the original link when they trashed Google Video in poor way, which has become their habit. There history now shows they create very unreliable web services that are an embarrassment to any engineer. Still YouTube is difficult to avoid, Vimeo while not suffering from being a Google product and therefore unreliable based on Google’s history, Vimeo offers only a small fraction of the content found on YouTube.]

Very cool webcast. The ant nest goes 8 meters into the earth. The nest is engineered with vents to promote the flow of air, bringing in fresh air and expelling carbon dioxide created by the large fungus gardens. The scientists filled the ant next with concrete to excavate it: 10 tons of concrete were needed.

Related: Symbiotic relationship between ants and bacteriaAnts on Stilts for ScienceGiant Nests of Yellow-jackets

Transferring Train Passengers Without Stopping

The webcast shows a train transferring passengers without stopping. Essentially passenger modules are picked up and dropped off at each station. Looks pretty cool and would seem to require somewhat complex engineering – which can be a problem as complexity allows for more things to go wrong. Still it looks pretty cool. The sound is not in English but you can see what the idea is.

Inventor rolls out efficient non-stop train system

Taking the Kaohsiung MRT system as an example, Peng says that its maximum speed is 85 kph. Because it must stop at every station, it achieves an average speed over its route of just 35 kph. If the non-stop system were in place, the top velocity of 85 kph could be maintained throughout the system, saving time and energy.

via: trains that pick you up without stopping

Related: Extreme EngineeringMIT Hosts Student Vehicle Design SummitDesigning Cities for People, Rather than Cars

How Computers Boot Up

How Computers Boot Up

Things start rolling when you press the power button on the computer (no! do tell!). Once the motherboard is powered up it initializes its own firmware – the chipset and other tidbits – and tries to get the CPU running. If things fail at this point (e.g., the CPU is busted or missing) then you will likely have a system that looks completely dead except for rotating fans. A few motherboards manage to emit beeps for an absent or faulty CPU, but the zombie-with-fans state is the most common scenario based on my experience. Sometimes USB or other devices can cause this to happen: unplugging all non-essential devices is a possible cure for a system that was working and suddenly appears dead like this. You can then single out the culprit device by elimination.

If all is well the CPU starts running. In a multi-processor or multi-core system one CPU is dynamically chosen to be the bootstrap processor (BSP) that runs all of the BIOS and kernel initialization code. The remaining processors, called application processors (AP) at this point, remain halted until later on when they are explicitly activated by the kernel. Intel CPUs have been evolving over the years but they’re fully backwards compatible, so modern CPUs can behave like the original 1978 Intel 8086, which is exactly what they do after power up. In this primitive power up state the processor is in real mode with memory paging disabled. This is like ancient MS-DOS where only 1 MB of memory can be addressed and any code can write to any place in memory – there’s no notion of protection or privilege.

Related: Harvard Course on Understanding Computers and the InternetProgramming RubyBabbage Difference Engine In Lego

Quake Lake Danger

Quakes lakes risk ‘slurry tsunami’

This month’s 7.9 magnitude tremor spawned 34 so-called quake lakes, according to the International Association of Hydraulic Engineering and Research expert. The vast pools of water were created when the earthquake triggered landslides down plunging valleys, clogging rivers and turning them into fast-rising lakes. Twenty-eight quake lakes are at risk of bursting, according to Chinese state media agency Xinhua. But the one at Tangjiashan – on the Jianjiang river above the town of Beichuan – is the most precarious.

The delicate, tortuous work involves heavy machinery gingerly shifting debris from the dam, and engineers blasting dynamite to carefully punch holes in the mountain of rubble and soil – although experts warn this risks further destabilising the structure. Nearly 160,000 people in the disaster zone have already been evacuated in case the Tangjiashan quake lake bursts.

Troops and engineers are racing to carve a 500 metre (1,640 ft) channel out of the landscape and divert the water towards the Fujiang river. They aim to complete the giant sluice and begin draining the 300 million cubic metre capacity lake within 10 days. “Once the water begins to flow over the top of the dam there’s nothing you can do to stop it,” said Dr Alex Densmore, of Durham University’s Institute of Hazard and Risk Research.

Little wonder then that Premier Wen Jiabao says he regards draining the swelling quake lakes at China’s ground zero as the nation’s most urgent task.

Related: Quake Lifts Island Ten Feet Out of OceanCivil Engineers: USA Infrastructure Needs ImprovementChina’s Technology Savvy LeadershipMegaflood Created the English Channel

Engineering Graduates Again in Great Shape

Once again engineering and computer science graduates are receiving the highest starting salaries. Previous posts: Lucrative college degrees (2006)starting salaries for engineers (2005)High Pay for Engineering Graduates 2007.

According to a survey, these are the top-paying majors for 2007-08 bachelor degree graduates:
$63,616 — Chemical engineering (up 6.5%)
$59,962 — Computer engineering
$59,873 — Computer science (up 14.7%)
$58,252 — Industrial/manufacturing engineering
$57,821 — Mechanical engineering (up 5.7%)
$57,999 — Aerospace/aeronautical/astronautical engineering

Source: Spring Survey, National Association of Colleges and Employers

Engineering Jobs Top U.S. Skills Shortage List

Engineering positions are the most difficult jobs to fill for U.S. employers, according to Manpower Inc.’s 2008 Talent Shortage Survey released April 24. Of 2,000 U.S. firms responding, 22% said they had difficulty filling positions, ranking engineers, machinists/machine operators and skilled manual trades as the top three toughest positions to fill, respectively

Grads’ job prospects weakening by degrees

In one year, the former hydraulic repairman will have a bachelor’s degree in mechanical engineering from Purdue University Calumet. And, as far as he can tell, he can write his own ticket.

“I’m finding jobs pulling at me left and right,” he said last week at a manufacturing industry job fair at the college. “The professors told us there’s such a demand, if you go to a job fair, you can walk out with a job.”

Vela, 35, happens to be in a field where demand remains strong, despite the uneven economy. Overall starting wages for mechanical engineering grads will be up 3.4 percent this year, with an average salary offer of $56,429, according to the National Association of Colleges and Employers. For many other college grads looking for a job at this time of year, the prospects are not as sweet.

Related: Career Center report high increase in demand for computer science graduatesIT Employment Hits New High AgainS&P 500 CEOs – Again Engineering Graduates Lead

Starting salaries: What the future holds (UK)
Continue reading