Tag Archives: Engineering

Using Nanocomposites to Improve Dental Filling Performance

After a dentist drills out a decayed tooth, the cavity still contains residual bacteria. Professor Huakun (Hockin) Xu says it is not possible for a dentist to remove all the damaged tissue, so it’s important to neutralize the harmful effects of the bacteria, which is just what the new nanocomposites are able to do.

Rather than just limiting decay with conventional fillings, the new composite he has developed is a revolutionary dental weapon to control harmful bacteria, which co-exist in the natural colony of microorganisms in the mouth.

“Tooth decay means that the mineral content in the tooth has been dissolved by the organic acids secreted by bacteria residing in biofilms or plaques on the tooth surface. These organisms convert carbohydrates to acids that decrease the minerals in the tooth structure,” says Xu, director of the Division of Biomaterials and Tissue Engineering in the School’s Department of Endodontics, Prosthodontics and Operative Dentistry.

The researchers also have built antibacterial agents into primer used first by dentists to prepare a drilled-out cavity and into adhesives that dentists spread into the cavity to make a filling stick tight to the tissue of the tooth. “The reason we want to get the antibacterial agents also into primers and adhesives is that these are the first things that cover the internal surfaces of the tooth cavity and flow into tiny dental tubules inside the tooth,” says Xu.

The main reason for failures in tooth restorations, says Xu, is secondary caries or decay at the restoration margins. Applying the new primer and adhesive will kill the residual bacteria, he says.

Continue reading

Pay as You Go Solar in India

Farmers Foil Utilities Using Cell Phones to Access Solar

In October, Bangalore-based Simpa Networks Inc. installed a solar panel on Anand’s whitewashed adobe house along with a small metal box in his living room to monitor electricity usage. The 25-year-old rice farmer, who goes by one name, purchases energy credits to unlock the system via his mobile phone on a pay-as-you-go model.

When his balance runs low, Anand pays 50 rupees ($1) — money he would have otherwise spent on kerosene. Then he receives a text message with a code to punch into the box, giving him about another week of electric light.
When he pays off the full cost of the system in about three years, it will be unlocked and he will get free power.

Across India and Africa, startups and mobile phone companies are developing so-called microgrids, in which stand- alone generators power clusters of homes and businesses in places where electric utilities have never operated.

Very cool. Worldwide, approximately 1.6 billion people have no access to electricity and another 1 billion have extremely unreliable access. The poorest spending up to 30% of their income on inefficient and expensive means of providing light and accessing electricity. Solutions like this, finding engineering solutions for basic needs that are market based, are great.

That the poor end up owning their solar system after just 3 years is great.

Creating great benefit to society with the smart adoption of technology and sustainable economics is something I love.

Related: Solar Power Market Solutions For Hundreds of Millions Without ElectricityAppropriate Technology: Solar Hot Water in Poor Cairo NeighborhoodsEngineering a Better World: Bike Corn-ShellerWater Pump Merry-go-Round

Google Lets Servers Stay Hot, Saving Air Conditioning Costs

The electricity to run huge server farms is enormous. One of the significant cost is air conditioning to cool down the server rooms.

Too Hot for Humans, But Google Servers Keep Humming

Google’s data center in Belgium, which was the company’s first facility to rely entirely upon fresh air for cooling, instead of energy-hungry chillers.

For the vast majority of the year, the climate in Belgium is cool enough that this design works with no problems. When it gets hot in Belgium, the temperature inside Google’s data center warms beyond the facility’s desired operating range

During these periods, the temperature inside the data center can rise above 95 degrees.

“We’ve had very few excursion hours, and they don’t last long, so we let the site run right through them. We ask our employees to go in and do office work. It’s too warm for people, but the machines do just fine.”

Google’s experience is the latest affirmation that servers are much tougher than we think. Many data centers feel like meat lockers, as servers are maintained in cool environments to offset the heat thrown off by components inside the chassis. Typical temperature ranges in data centers often range from 68 and 72 degrees.

In recent years, rising power bills have prompted data center managers to try and reduce the amount of power used in cooling systems.

The temperatures in Fahrenheit obviously. I was surprised that the servers don’t seem to need to be chilled to perform well.

Related: Saving Energy with Smart SoftwareNew Server Uses 75% Less Power and Space

Lean Science: Using Cheap Robots to Aid Research

Fun video showing how scientists use Lego Mindstorm robots to aid research into creating artificial bones. Lego Mindstorm robots are useful at a very reasonable price.

The webcast also includes this practical quote from Michelle Oyen, lecturer in the Department of Engineering at Cambridge University: “without your bones you would be a pile of goo lying on the floor.”

The thinking discussed in the webcast echos the lean manufacturing principles discussed in the Curious Cat Management Improvement Blog: finding good solutions to aid people in doing their jobs. The type of custom solutions they discuss here are great.

This type of use of technology is great. One of the problems we often see with technology solutions though is when they are imposed on the workplace in a way that doesn’t aid people. There is a big difference between what Toyota does (using robots to make people’s jobs easier) and what others do in trying to copy Toyota (using robots to eliminate jobs). Lean manufacturing stressed the importance of using brainpower people bring to work every day. You want to use technology to enable people. These scientists understand that. Unfortunately many managers don’t.

Related: Lego Mindstorms Robots Solving: Sudoku and Rubik’s CubeOpen Source for LEGO MindstormsRubick’s Cube Solving Lego Mindstorms Robot

£50m Package to Attract Scientists and Boost Welsh Economy

‘Star scientists’ £50m package to boost Welsh economy

First Minister Carwyn Jones said the fund would be used to encourage leading professors to move to Wales to work and boost research and the economy. It will pay for specialist equipment, top-up salaries to the level outstanding academics would expect and will fund members of their teams.

our network plans will enable us to attract more talent to Wales to help drive this figure up and in due course create more high quality business and research jobs in Wales.” The strategy sets out three key areas to boost research and businesses – the life sciences and health; low carbon, energy and environment; and advanced engineering and materials.

The Welsh government said it wanted to see more industry-academic partnerships like SPECIFIC led by Swansea University with Tata Steel UK. The £20m project aims to turn homes and businesses into self-generating “power stations” by developing a special coating for ordinary building materials, such as steel and glass, that traps and stores solar energy.

The USA dominated the practice of attracting leading scientists a few decades ago. In the last decade or two Europe stepped up and was able to attract global talent. Lately Asia (Singapore, Korea, China…) has been spending to attract leading scientists. I believe Asia will continue to do so and the benefits of doing so will pay off handsomely for Asia (at the expense of Europe and the USA).

Related: USA Losing Scientists and Engineers Educated in the USAInvest in Science for a Strong EconomyAsia: Rising Stars of Science and EngineeringSingapore Research Fellowships

Thorium Nuclear Reactors

Kirk Sorensen is founder of Flibe Energy and is an advocate for nuclear energy based on thorium and liquid-fluoride fuels and author of Energy From Thorium blog.

He also taught nuclear engineering at Tennessee Technological University as a guest lecturer. He is active in nonprofit advocacy organizations such as the Thorium Energy Alliance and the International Thorium Energy Organization. He is married and has four small children.

See another video with him on why the thorium molten-salt reactor wasn’t developed (from a Google tech talk).

Related: Molten Salt Solar Reactor Approved by CaliforniaHelium-3 Fusion ReactorNuclear Power Production by Country from 1985-2009Mining the Moon

Kindergarten Students Pedel Their Own Bus to School

photo of kindergarden students pedaling their bus to school

Dutch kindergarden students pedaling their bus to school

Dutch Kids Pedal Their Own Bus To School

The Dutch are bicycle fanatics. Almost half of daily travel in the Netherlands is by bicycle, while the country’s bike fleet comfortably outnumbers its 16 million people. Devotees of the national obsession have taken the next logical step by launching what is likely the first bicycle school bus.

Built by Tolkamp Metaalspecials, and sold by the De Cafe Racer company, the bicycle school bus (BCO in Dutch) is powered entirely by children and the one adult driver (although there is an electric motor for tough hills). Its simple design has eight sets of pedals for the kids (ages 4 to 12), a driver seat for the adult, and three bench seats for freeloaders. The top speed is about 10 miles per hour, and features a sound system and canvas awning to ward off rainy days.

They have sold 25 of the busses so far for $15,000 each.

Related: Sports EngineeringGermany Looking to Kindergarten for Engineering FutureEngineering a Better World: Bike Corn-Sheller

Engineers Again Shown to Lead More Companies Than Other Disciplines

I have written previously about the fact that more S&P 500 CEO’s are engineering majors than any other discipline. The group putting out those studies have stopped doing so, unfortunately. There is a new study based on mining Facebook data and the results again show engineers doing very well.

I wish they provided data for the larger companies, but they don’t. They show a breakdown of 9,461 (CEO or founders) with a business undergraduate major and 9,334 with an engineering degree. For those with advanced degrees 3,337 have an engineering master’s or doctorate and 1,016 have an MBA.

In the latest (2008) data I have for S&P 500 CEO’s 22% were engineers. Engineers seem to make up under 5% of college graduates (based on my eyeballing of this Dept. of Education data). Business meanwhile seems to make up about 20% of the majors.

See more posts looking at science and engineering careers: Future Prospects for EngineersEngineering Again Dominates The Highest Paying College MajorsScience and Engineering in Global EconomicsCareer Prospect for Engineers Continues to Look Positive

Mitsubishi Uses a Sled of Bubbles To Improve Ship Efficiency

Mitsubishi completed the conceptual design of a new container ship; this eco-ship achieves a 25% decrease in CO2 emissions over existing ships. Three, of these ships, with the Mitsubishi Air Lubrication System (MALS), are being built now (they should be completed in 2014).

In addition to blowers to create air bubbles under the vessel bottom, the three grain carriers will also feature a newly designed bow shape that will reduce wave-making resistances. For propulsion, the ship adopts a system to effectively convert the main engine power into propulsion power by positioning fins forward of the propellers and placing particular grooves in the propeller boss cap.

Using “eco-ships” to substantially reduce CO2 emissions from maritime transport

Reducing the frictional drag on the hull of a ship saves fuel and lowers CO2 emissions. To achieve this, MHI developed the Mitsubishi Air Lubrication System (MALS), which reduces frictional drag by introducing air bubbles by air blower into the water around the bottom of a ship’s hull, covering the ship in bubbles. By arranging the air blowhole location and shape and controlling the air volume, the lubrication effect has been enhanced, reducing CO2 emissions per container transportation by 10 percent.

This system has already been introduced on module carriers, and has been proven to reduce CO2 emissions significantly.

Related: Sails for Modern Cargo ShipsEco-Vehicle Student Competition

How Lysozyme Protein in Our Tear-Drops Kill Bacteria

A disease-fighting protein in our teardrops has been tethered to a tiny transistor, enabling UC Irvine scientists to discover exactly how it destroys dangerous bacteria. The research could prove critical to long-term work aimed at diagnosing cancers and other illnesses in their very early stages.

Ever since Nobel laureate Alexander Fleming found that human tears contain antiseptic proteins called lysozymes about a century ago, scientists have tried to solve the mystery of how they could relentlessly wipe out far larger bacteria. It turns out that lysozymes have jaws that latch on and chomp through rows of cell walls like someone hungrily devouring an ear of corn.

“Those jaws chew apart the walls of the bacteria that are trying to get into your eyes and infect them,” said molecular biologist and chemistry professor Gregory Weiss, who co-led the project with associate professor of physics & astronomy Philip Collins.

The researchers decoded the protein’s behavior by building one of the world’s smallest transistors – 25 times smaller than similar circuitry in laptop computers or smartphones. Individual lysozymes were glued to the live wire, and their eating activities were monitored.

“Our circuits are molecule-sized microphones,” Collins said. “It’s just like a stethoscope listening to your heart, except we’re listening to a single molecule of protein.”

It took years for the UCI scientists to assemble the transistor and attach single-molecule teardrop proteins. The scientists hope the same novel technology can be used to detect cancerous molecules. It could take a decade to figure out but would be well worth it, said Weiss, who lost his father to lung cancer.

“If we can detect single molecules associated with cancer, then that means we’d be able to detect it very, very early,” Weiss said. “That would be very exciting, because we know that if we treat cancer early, it will be much more successful, patients will be cured much faster, and costs will be much less.”

The project was sponsored by the National Cancer Institute and the National Science Foundation. Co-authors of the Science paper are Yongki Choi, Issa Moody, Patrick Sims, Steven Hunt, Brad Corso and Israel Perez.

Related: full press releaseWhy ‘Licking Your Wounds’ WorksHow Bleach Kills BacteriaAlgorithmic Self-Assembly