Tag Archives: engineers

Honda Engineering

Inside Honda’s brain by Alex Taylor III

why is Honda playing with robots? Or, for that matter, airplanes? Honda is building a factory in North Carolina to manufacture the Hondajet, a sporty twin-engine runabout that carries six passengers. Or solar energy? Honda has established a subsidiary to make and market thin-film solar-power cells. Or soybeans? Honda grows soybeans in Ohio so that it can fill up cargo containers being shipped back to Japan. The list goes on. All this sounds irrelevant to a company that built some 24 million engines last year and stuffed them into everything from cars to weed whackers.

On fuel cells, Honda is literally years ahead of the competition. The FCX Clarity will go on sale in California this summer. It is powered by a fuel cell that uses no gasoline and emits only water vapor. Though mass production is at least a decade away, the Clarity is no mere test mule. Elegant and efficient, its hydrogen-powered fuel-cell stack is small enough to fit in the center tunnel – a significant improvement over other, bulkier power packs – and robust enough for a range of 270 miles.

The wellspring of Honda’s creative juices is Honda R&D, a wholly owned subsidiary of Honda Motor. Based in Saitama, west of Tokyo, R&D engineers create every product that Honda makes – from lawn mowers to motorcycles and automobiles – and pursue projects like Asimo and Hondajet on the side. Defiantly individualistic, R&D insists on devising its own solutions and shuns outside alliances. On paper it reports to Honda Motor, but it is powerful enough to have produced every CEO since the company was founded in 1948.

The engineer in Fukui [Honda’s president and CEO] cannot help but be intrigued by what his former colleagues are up to, and his office is only a few steps away from Kato’s. But even with the CEO just down the hall, says Kato, “We want to look down the road. We do not want to be influenced by the business.”

Honda allows its engineers wide latitude in interpreting its corporate mission. “We’ve been known to study the movement of cockroaches and bumblebees to better understand mobility,” says Frank Paluch, a vice president of automotive design. Honda R&D gets about 5% of Honda’s annual revenues. Most of the money goes to vehicle development, not cockroach studies

mistakes like the Insight are also the exception. R&D has provided Honda with a long list of engineering firsts that consumers liked, including the motorcycle airbag, the low-polluting four-stroke marine engine, and ultralow-emission cars.

Related: S&P 500 CEOs – More Engineering GraduatesGoogle Investing Huge Sums in Renewable Energy and is HiringAsimo Robot, Running and Climbing StairsApplied ResearchGoogle: Ten Golden Rules

2008 Draper Prize for Engineering

Draper Prize for Engineering Medal

2008 Charles Stark Draper Prize will be awarded to Rudolf Kalman for the development and dissemination of the optimal digital technique known as the Kalman Filter. The award recipient receives a $500,000 cash award. 2007 Draper Prize to Berners-Lee2006 Draper Prize for Engineering

The Kalman Filter uses a mathematical technique that removes “noise” from series of data. From incomplete information, it can optimally estimate and control the state of a changing, complex system over time. The Kalman filter revolutionized the field of control theory and has become pervasive in engineering systems. It has been applied to systems and devices in nearly all engineering fields and continues to find new uses today. Applications include target tracking by radar, global positioning systems, hydrological modeling, atmospheric observations, time-series analyses in econometrics, and automated drug delivery.

Administered by the National Academy of Engineering, the Draper Prize is endowed by The Charles Stark Draper Laboratory, Inc., and was established in 1988. The Prize is awarded for outstanding achievement, particularly innovation and reduction to practice, in engineering and technology contributing to the advancement of the welfare and freedom of humanity.

Related: 2006 Gordon Engineering Education Prize2006 MacArthur Fellows2005 and 2006 National Science and Technology MedalsShaw Laureates 2007

Entrepreneurial and Innovative Engineers

An interview with the Managing Director of Texas Instruments, India – How to mould great ‘intrapreneurs’

“We need an entrepreneurial spirit in every engineer and in every business person. In today’s competitive world, the dividing line between an entrepreneur and a professional is getting blurred. Whatever one is pursuing, one has to be entrepreneurial ‘and’ professional in his or her mindset,” Dr Mitra

We have a strong technical ladder running in parallel with the management ladder. The technical ladder at TI is not just unique in its concept and implementation, but it is also a powerful endorsement of the
organisation’s intent to reward and recognise outstanding technical leadership. The honour associated with being on the technical ladder is very high.

We also encourage small teams of engineers with an ‘intrapreneurial’ mindset to work on creative ideas and validate these with customers and our worldwide marketing teams. Some of these ideas could lead to potential breakthroughs for the future.

At TI, we also recognise that ‘collaborative innovation’ can have a powerful impact on our customers. This drives us to actively partner with several innovative companies, who develop applications on our platform. Over the last two decades, we have also built an extensive partner network of over 650 reputed Indian Universities – who are working closely with us on many innovative programs.

I joined TI in 1986, after graduating from IIT, Kharagpur with a B.Tech in Electronics and Electrical Communication Engineering. While working for TI, I received my Ph.D in Computer Science and Engineering from IIT, Kharagpur and also an Executive MBA degree from the University of Texas, Austin

Related: Marissa Mayer on Innovation at GoogleEngineer’s Future ProspectsThe Future is EngineeringEntrepreneurial Engineers

NSF CAREER Award Winners

Engineer Roy Choudhury wins NSF Early Career Award

Assistant Professor Romit Roy Choudhury has received a 5-year, $437,000 National Science Foundation Early CAREER award. The distinction recognizes and supports the early career development activities of those teacher-scholars who are most likely to become academic leaders

“A smart antenna is like a spotlight,” Roy Choudhury explains. “It forms a focused beam that can be used to precisely transmit and receive information. This opens up a new realm of possibilities, including concurrent communications, higher transmission range, better information hiding, etc. In contrast,” he said, “old school ‘dumb’ antennas are analogous to lightbulbs. You turn them on and they spread light everywhere, or in this case, interfere with all the other communications around them.”

“Security and privacy are additional advantages of antenna-aware protocols”, said Roy Choudhury. “By focusing your beams intelligently, you may prevent eavesdroppers form listening to your conversation, and even jam them selectively. Such capabilities have obvious implications for national security.”

Through his NSF CAREER project, named Spotlight, Roy Choudhury plans to develop the theoretical basis for antenna-aware networking, design distributed protocols, and implement them on an experimental testbed.

You can get the press releases on CAREER on nsf.gov for 1996-2000? Do they know it is 2008?

Here are some more awardees from this year: Worcester Polytechnic Institute Professor Wenjing LouClarkson University Civil and Environmental Engineering Professor Narayanan NeithalathEngineering’s Ghosh Wins NSF Award for Novel Transistor Research at the NanoscaleShengquan Wang is an assistant professor of computer and information science at the University of Michigan-DearbornDr. Glen Jackson, Assistant Professor of Chemistry and Bio Chemistry at Ohio UniversityDr. C. Heath Turner, Reichhold-Shumaker assistant professor of chemical and biological engineering at The University of Alabama

Related: Presidential Early Career Award for Scientists and Engineers (2006)2005 MacArthur FellowsPresidential Early Career Awards for Scientists and Engineers (2007)

YouTube Access Denied

Millions of users around the globe could not access YouTube for a couple hours yesterday. Why?

Well to understand, we need to start with how you normally connect to a web site. You click on a link to youtube.com. Your ISP looks up the internet address for youtube.com by looking at internet routing tables. Each domain has a name server that provides the IP address for where it should be found (for example, an IP address that shows youtube.com is 208.65.153.238).

Well what happened in this case is Pakistan decided to prevent anyone in Pakistan from accessing YouTube because the government didn’t like some video. The way Pakistan decided to accomplish this was to update their routing table to just direct all traffic that was meant to go to YouTube to a phony address which would then return nothing.

Why did many outside of Pakistan lose access to YouTube? Well their version of the routing table leaked out of Pakistan through PCCW (large internet provider), Then other internet providers adopted the incorrect information, until many around the globe were being directed to the wrong place.

You might find it amazing the routing system could allow such a thing to happen – it doesn’t seem very secure. You are right, that it doesn’t seem very sensible. When the internet was created some protocols were established that made sense then but don’t necessarily make sense for what the internet has become.

The problem was fixed when Google’s YouTube engineers contacted PCCW to inform them of the problem and have them correct it. I think if it was my site instead, I would have had difficulty figure out what was going on 🙂 Once PCCW corrected their routing tables the fixed flowed through the system and everyone was able to see the great stuff like Marissa Mayer discussing Innovation at Google.

I would imagine Internet2 (well on its way to a computer near you) and IPv6 will take not be so venerable to such a mistake.

Related: Insecure routing redirects YouTube to PakistanYouTube outage blamed on PakistanYouTube Censorship Sheds Light on Internet TrustThe Web is 15 Years OldInternet Undersea CablesHarvard Course: Understanding Computers and the InternetNet NeutralityThe Next Generation InternetThe Journey of Internet Packetsmistake proofing (the opposite of the current setup)

Car Powered Using Compressed Air

car powered using compressed air

Jules Verne predicted cars would run on air. The Air Car (link broken, so it was removed) is making that a reality. The car is powered by compressed air which certainly seems like an interesting idea. Air car ready for production (link broken, so it was removed, sigh, when will site stop failing the web so badly?):

Refueling is simple and will only take a few minutes. That is, if you live nearby a gas station with custom air compressor units. The cost of a fill up is approximately $2.00. If a driver doesn’t have access to a compressor station, they will be able to plug into the electrical grid and use the car’s built-in compressor to refill the tank in about 4 hours.

The car is said to have a driving range of 125 miles so by my calculation it would cost about 1.6 cents per mile. A car that gets 31 mpg would use 4 gallons to go 124 miles. At $3 a gallon for gas, the cost is $12 for fuel or about 9.7 cents per mile. I didn’t notice anything about maintenance costs. I don’t see any reason why the Air Car would cost more to maintain than a normal car.

The air car was named one of Time magazine’s best inventions of the 2007.

Five-seat concept car runs on air

An engineer has promised that within a year he will start selling a car that runs on compressed air, producing no emissions at all in town. The OneCAT will be a five-seater with a fibre-glass body, weighing just 350kg and could cost just over £2,500.

Tata is the only big firm he’ll license to sell the car – and they are limited to India. For the rest of the world he hopes to persuade hundreds of investors to set up their own factories, making the car from 80% locally-sourced materials.

“Imagine we will be able to save all those components traveling the world and all those transporters.” He wants each local factory to sell its own cars to cut out the middle man and he aims for 1% of global sales – about 680,000 per year. Terry Spall from the Institution of Mechanical Engineers says: “I really hope he succeeds. It is a really brave experiment in producing a sustainable car.”

Related: The History of Compressed Air VehiclesCar Elevator (for parking)Electric AutomobilesVW Phaeton manufacturing plant

Great Self Portrait

photo of astronaut's faceplate reflecting earth

Photo by, and of, Astronaut Clay Anderson, Expedition 15 flight engineer. He used a digital camera to expose a photo of his helmet visor during the mission’s third planned session of extravehicular activity (EVA) on the International Space Station (15 August 2007). Also visible in the reflections in the visor are various components of the station and a blue and white portion of Earth. During the 5-hour, 28-minute spacewalk, Anderson and astronaut Rick Mastracchio (out of frame), STS-118 mission specialist, relocated the S-Band Antenna Sub-Assembly from Port 6 (P6) to Port 1 (P1) truss, installed a new transponder on P1 and retrieved the P6 transponder.

NASA provides their content, photos etc. online in an open access spirit. When linking to content (especially images) it is best to provide context (and with the internet the easiest way to do is so is relevant links). You can find many low resolution pictures of the image above around the internet. Trying to find the context around the image is not so easy – it took me quite awhile to do so. I try to provide the context and links. Lately some more sites will link to some original sources but this is still done far to infrequently.

There are also still far too many pointy haired bosses (PHB) making decisions to break the web by killing pages: web pages must live forever. Those PHB’s decisions do reduce the great benefit of linking but it is still worth doing for those cases where web sites are managed by people with the knowledge and ability to manage an internet resource properly.

Photo: NASA – high resolution version

Related: Van Gogh self portraitMars Rovers Getting Ready for Another AdventureNASA Robotics Academy

Playing Dice and Children’s Numeracy

My father, Willaim Hunter, a professor of statistics and of Chemical Engineering at the University of Wisconsin, was a guest speaker for my second grade class (I think it was 2nd) to teach us about numbers – using dice. He gave every kid a die. I remember he asked all the kids what number do you think will show up when you roll the die. 6 was the answer from about 80% of them (which I knew was wrong – so I was feeling very smart).

Then he had the kids roll the die and he stood up at the front to create a frequency distribution of what was actually rolled. He was all ready for them to see how wrong they were and learn it was just as likely for any of the numbers on the die to be rolled. But as he asked each kid about what they rolled something like 5 out of the first 6 said they rolled a 6. He then modified the exercise a bit and had the kid come up to the front and roll the die on the teachers desk. Then my Dad read the number off the die and wrote on the chart 🙂

This nice blog post, reminded me of that story: Kids’ misconceptions about numbers — and how they fix them

in the real study, conducted by John Opfer and Rober Siegler, the kids used lines with just 0 and 1000 labeled. They were then given numbers within that range and asked to draw a vertical line through the number line where each number fell (they used a new, blank number line each time). The figure above represents (in red) the average results for a few of the numbers used in the study. As you can see, the second graders are way off, especially for lower numbers. They typically placed the number 150 almost halfway across the number line! Fourth graders perform nearly as well as adults on the task, putting all the numbers in just about the right spot.

But there’s a pattern to the second-graders’ responses. Nearly all the kids (93 were tested) understood that 750 was a larger number than 366; they just squeezed too many large numbers on the far-right side of the number line. In fact, their results show more of a logarithmic pattern than the proper linear pattern.

Google Investing Huge Sums in Renewable Energy and is Hiring

Towards more renewable energy posted to Google’s blog by Larry Page, Co-Founder and President of Products:

Promising technologies already exist that could be developed to deliver renewable energy cheaper than coal. We think the time is ripe to build rapidly on the tremendous work on renewable energy. For example, I believe that solar thermal technology provides a very plausible path to generating cheaper electricity. By combining talented technologists, great partners and large investments, we have an opportunity to quickly push this technology forward. Our goal is to build 1 gigawatt of renewable energy capacity that is cheaper than coal. We are optimistic that this can be done within years, not decades. If we succeed, it would likely provide a path to replacing a substantial portion of the world’s electricity needs with renewable energy sources.

To lead this effort, we’re looking for a world-class team. We need creative and motivated entrepreneurs and technologists with expertise in a broad range of areas, including materials science, physics, chemistry, mechanical engineering, electrical engineering, land acquisition and management, power transmission and substations, construction, and regulatory issues. Join us. And if you’re interested, read about our previous work toward a clean energy future

Very cool. And I think something Google might be able to pull off well. It is also true this may be a distraction and not work well. For many companies that would be my guess for how it would play out. Google has done an exceptional job of allowing engineers to do what they do best. And I think there is a chance they can translate that into effectively managing such a project as this. Google continues to try what they believe even if that is not the conventional path. Good for them.

Related: posts on energyposts on Google managementGoogle’s cheaper-than-coal targetWind PowerLarge-Scale, Cheap Solar Electricity12 Stocks for 10 Years UpdateLarry Page and Sergey Brin Interview WebcastGoogle’s Renewable Energy Cheaper than Coal (press release)

Continue reading

Presidential Early Career Awards for Scientists and Engineers

The Presidential Early Career Awards for Scientists and Engineers, established in 1996, honors the most promising researchers in the Nation within their fields. Nine federal departments and agencies annually nominate scientists and engineers who are at the start of their independent careers and whose work shows exceptional promise for leadership at the frontiers of scientific knowledge. Participating agencies award these talented scientists and engineers with up to five years of funding to further their research in support of critical government missions.

Awards were announced today – links to some of the awardees:

  • Jelena Vuckovic, Assistant Professor of Electrical Engineering, Stanford University
  • Matthew Rodell, Physical Scientist, NASA
  • Katerina Akassoglou, Assistant Professor of Pharmacology, University of California, San Diego
  • Carlos Rinaldi, Associate Professor of Chemical Engineering University of Puerto Rico at Mayagüez
  • Ahna Skop, Assistant Professor of Genetics, University of Wisconsin-Madison
  • Krystyn J. Van Vliet, Assistant Professor of Materials Science and Engineering, MIT
  • Odest Chadwicke Jenkins, Assistant Professor, Department of Computer Science, Brown University

Related: 2006 MacArthur FellowsYoung Innovators Under 35Presidential Early Career Award for Scientists and Engineers (2006)NSF Release on 2007 awardees that are also NSF CAREER awardees