Tag Archives: Funding

Using Nanocomposites to Improve Dental Filling Performance

After a dentist drills out a decayed tooth, the cavity still contains residual bacteria. Professor Huakun (Hockin) Xu says it is not possible for a dentist to remove all the damaged tissue, so it’s important to neutralize the harmful effects of the bacteria, which is just what the new nanocomposites are able to do.

Rather than just limiting decay with conventional fillings, the new composite he has developed is a revolutionary dental weapon to control harmful bacteria, which co-exist in the natural colony of microorganisms in the mouth.

“Tooth decay means that the mineral content in the tooth has been dissolved by the organic acids secreted by bacteria residing in biofilms or plaques on the tooth surface. These organisms convert carbohydrates to acids that decrease the minerals in the tooth structure,” says Xu, director of the Division of Biomaterials and Tissue Engineering in the School’s Department of Endodontics, Prosthodontics and Operative Dentistry.

The researchers also have built antibacterial agents into primer used first by dentists to prepare a drilled-out cavity and into adhesives that dentists spread into the cavity to make a filling stick tight to the tissue of the tooth. “The reason we want to get the antibacterial agents also into primers and adhesives is that these are the first things that cover the internal surfaces of the tooth cavity and flow into tiny dental tubules inside the tooth,” says Xu.

The main reason for failures in tooth restorations, says Xu, is secondary caries or decay at the restoration margins. Applying the new primer and adhesive will kill the residual bacteria, he says.

Continue reading

Harvard Steps Up Defense Against Abusive Journal Publishers

For a decade journals have been trying to continue a business model that was defensible in a new world where it is not. They have becoming increasing abusive with even more outrageous fees than they were already charging. As I said years ago it has become obvious they are enemies of science and should be treated as such. The time to find mutual beneficial solution past years ago.

Harvard University says it can’t afford journal publishers’ prices

Exasperated by rising subscription costs charged by academic publishers, Harvard University has encouraged its faculty members to make their research freely available through open access journals and to resign from publications that keep articles behind paywalls.

A memo from Harvard Library to the university’s 2,100 teaching and research staff called for action after warning it could no longer afford the price hikes imposed by many large journal publishers, which bill the library around $3.5m a year.

he memo from Harvard’s faculty advisory council said major publishers had created an “untenable situation” at the university by making scholarly interaction “fiscally unsustainable” and “academically restrictive”, while drawing profits of 35% or more. Prices for online access to articles from two major publishers have increased 145% over the past six years, with some journals costing as much as $40,000, the memo said.

More than 10,000 academics have already joined a boycott of Elsevier, the huge Dutch publisher, in protest at its journal pricing and access policies. Many university libraries pay more than half of their journal budgets to the publishers Elsevier, Springer and Wiley.

Research Libraries UK negotiated new contracts with Elsevier and Wiley last year after the group threatened to cancel large subscriptions to the publishers. The new deal, organised on behalf of 30 member libraries, is expected to save UK institutions more than £20m.

These journals have continuously engaged in bad practices. Scientists should publish work in ways that enrich the scientific community not ways that starve the scientific commons and enrich a few publishers that are doing everything they can to hold back information sharing.

In 2008 Harvard’s liberal arts faculty voted to make their research open source.

Related: Fields Medalist Tim Gowers Takes Action To Stop Cooperating with Anti-Open Science CartelScience Commons: Making Scientific Research Re-usefulMIT Faculty Open Access to Their Scholarly ArticlesMerck and Elsevier Publish Phony Peer-Review JournalOpen Access Journal Wars

How do Plants Grow Into the Sunlight?

Plants are extremely competitive in gaining access to sunlight. A plant’s primary weapon in this fight is the ability to grow towards the light, getting just the amount it needs and shadowing its competition. Now, scientists have determined precisely how leaves tell stems to grow when a plant is caught in a shady place.

photo of a forest

Hole in the Wall trail, Olympic National Park, Washington, USA by John Hunter

The researchers discovered that a protein known as phytochrome interacting factor 7 (PIF7) serves as the key messenger between a plant’s cellular light sensors and the production of auxins, hormones that stimulate stem growth.

“We knew how leaves sensed light and that auxins drove growth, but we didn’t understand the pathway that connected these two fundamental systems,” says Joanne Chory, professor and director of the Salk’s Plant Biology Laboratory and a Howard Hughes Medical Institute investigator (HHMI provides huge amounts of funding for scientific research). “Now that we know PIF7 is the relay, we have a new tool to develop crops that optimize field space and thus produce more food or feedstock for biofuels and biorenewable chemicals.”

Plants gather intelligence about their light situation—including whether they are surrounded by other light-thieving plants—through photosensitive molecules in their leaves. These sensors determine whether a plant is in full sunlight or in the shade of other plants, based on the wavelength of red light striking the leaves. This is pretty cool; I love to learn about the brilliant strategies that have evolved.

If a sun-loving plant, such as thale cress (Arabidopsis thaliana), the species Chory studies, finds itself in a shady place, the sensors will tell cells in the stem to elongate, causing the plant to grow upwards towards sunlight.

When a plant remains in the shade for a prolonged period, however, it may flower early and produce fewer seeds in a last ditch effort to help its offspring spread to sunnier real estate. In agriculture, this response, known as shade avoidance syndrome, results in loss of crop yield due to closely planted rows of plants that block each other’s light.

Continue reading

£50m Package to Attract Scientists and Boost Welsh Economy

‘Star scientists’ £50m package to boost Welsh economy

First Minister Carwyn Jones said the fund would be used to encourage leading professors to move to Wales to work and boost research and the economy. It will pay for specialist equipment, top-up salaries to the level outstanding academics would expect and will fund members of their teams.

our network plans will enable us to attract more talent to Wales to help drive this figure up and in due course create more high quality business and research jobs in Wales.” The strategy sets out three key areas to boost research and businesses – the life sciences and health; low carbon, energy and environment; and advanced engineering and materials.

The Welsh government said it wanted to see more industry-academic partnerships like SPECIFIC led by Swansea University with Tata Steel UK. The £20m project aims to turn homes and businesses into self-generating “power stations” by developing a special coating for ordinary building materials, such as steel and glass, that traps and stores solar energy.

The USA dominated the practice of attracting leading scientists a few decades ago. In the last decade or two Europe stepped up and was able to attract global talent. Lately Asia (Singapore, Korea, China…) has been spending to attract leading scientists. I believe Asia will continue to do so and the benefits of doing so will pay off handsomely for Asia (at the expense of Europe and the USA).

Related: USA Losing Scientists and Engineers Educated in the USAInvest in Science for a Strong EconomyAsia: Rising Stars of Science and EngineeringSingapore Research Fellowships

Intel Science Talent Search 2012 Awardees

Nithin Tumma, whose research could lead to less toxic and more effective breast cancer treatments, received the top award of $100,000 at the Intel Science Talent Search 2012, a program of Society for Science & the Public. Other finalists from across the U.S. took home additional awards totaling $530,000.

The Intel Science Talent Search, the nation’s oldest and most prestigious pre-college science and math competition, recognizes 40 high school seniors who are poised to be the next leaders in innovation and help solve some of the world’s greatest challenges.

Nithin Tumma, 17, of Fort Gratiot, Mich., won the top award of $100,000 from the Intel Foundation for his research, which could lead to more direct, targeted, effective and less toxic breast cancer treatments. He analyzed the molecular mechanisms in cancer cells and found that by inhibiting certain proteins, we may be able to slow the growth of cancer cells and decrease their malignancy. Nithin is first in his class, a varsity tennis player and a volunteer for the Port Huron Museum, where he started a restoration effort for historical and cultural landmarks.

Second place honors and $75,000 went to Andrey Sushko, 17, of Richland, Wash., for his development of a tiny motor, only 7 mm (almost 1/4 inch) in diameter, which uses the surface tension of water to turn its shaft. Born in Russia, Andrey worked from home to create his miniature motor, which could pave the way for other micro-robotic devices. Andrey, a long-time builder of small boats, recently filed for a Guinness World Record for the smallest radio-controlled sailing yacht.

Third place honors and $50,000 went to Mimi Yen, 17, of Brooklyn, N.Y., for her study of evolution and genetics, which focuses on microscopic worms, specifically looking at their sex habits and hermaphrodite tendencies. Mimi believes that through research such as hers, we may better understand the genes that contribute to behavioral variations in humans. Mimi was born in Honduras and is fluent in Cantonese. She plays French horn and volunteers to prepare and deliver meals to people with serious illnesses.

These finalists join the ranks of other notable Science Talent Search alumni who over the past 70 years have gone on to win seven Nobel Prizes, two Fields Medals, four National Medals of Science, 11 MacArthur Foundation Fellowships and even an Academy Award for Best Actress.

“We invest in America’s future when we recognize the innovative achievements of our nation’s brightest young minds,” said Intel President and CEO Paul Otellini. “Hands-on experience with math and science, such as that required of Intel Science Talent Search finalists, encourages young people to think critically, solve problems and understand the world around them. Rather than simply memorizing facts and formulas, or repeating experiments with known outcomes, this competition engages students in an exciting way and provides a deeper level of understanding in such important but challenging subjects.”

Related: Intel Science and Engineering Fair 2009 WebcastsGirls Sweep Top Honors at Siemens Competition in Math, Science and TechnologyIntel International Science and Engineering Fair Awards 2006

Continue reading

Milky Way May Have 100,000 Times More Nomad Planets Than Stars

There may be 100,000 times more “nomad planets” in the Milky Way than stars, according to a new study by researchers at the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), a joint institute of Stanford University and the SLAC National Accelerator Laboratory. How amazing is that. Science is so cool. I had no idea this was the case.

If observations confirm the estimate, this new class of celestial objects will affect current theories of planet formation and could change our understanding of the origin and abundance of life.

“If any of these nomad planets are big enough to have a thick atmosphere, they could have trapped enough heat for bacterial life to exist,” said Louis Strigari, leader of the team that reported the result in a paper: Nomads of the Galaxy. Although nomad planets don’t bask in the warmth of a star, they may generate heat through internal radioactive decay and tectonic activity.

Searches over the past two decades have identified more than 500 planets outside our solar system, almost all of which orbit stars. Last year, researchers detected about a dozen nomad planets, using a technique called gravitational microlensing, which looks for stars whose light is momentarily refocused by the gravity of passing planets.

The research produced evidence that roughly two nomads exist for every typical, so-called main-sequence star in our galaxy. The new study estimates that nomads may be up to 50,000 times more common than that.

To arrive at what Strigari himself called “an astronomical number,” the KIPAC team took into account the known gravitational pull of the Milky Way galaxy, the amount of matter available to make such objects and how that matter might divvy itself up into objects ranging from the size of Pluto to larger than Jupiter. Not an easy task, considering no one is quite sure how these bodies form. According to Strigari, some were probably ejected from solar systems, but research indicates that not all of them could have formed in that fashion.

“To paraphrase Dorothy from The Wizard of Oz, if correct, this extrapolation implies that we are not in Kansas anymore, and in fact we never were in Kansas,” said Alan Boss of the Carnegie Institution for Science, author of The Crowded Universe: The Search for Living Planets, who was not involved in the research. “The universe is riddled with unseen planetary-mass objects that we are just now able to detect.”

A good count, especially of the smaller objects, will have to wait for the next generation of big survey telescopes, especially the space-based Wide-Field Infrared Survey Telescope and the ground-based Large Synoptic Survey Telescope, both set to begin operation in the early 2020s.

A confirmation of the estimate could lend credence to another possibility mentioned in the paper – that as nomad planets roam their starry pastures, collisions could scatter their microbial flocks to seed life elsewhere.

Additional authors included KIPAC member Matteo Barnabè and affiliate KIPAC member Philip Marshall of Oxford University. The research was supported by NASA, the National Science Foundation and the Royal Astronomical Society.

Related: full press releaseAstronomers Find a Planet Denser Than LeadHot Ice PlanetNASA’s Mars Curiosity RoverPlanet, Less Dense Than Cork, Is Discovered

Microbiologist Develops Mouthwash That Targets Only Harmful Cavity Causing Bacteria

A new mouthwash developed by a microbiologist at the UCLA School of Dentistry is highly successful in targeting the harmful Streptococcus mutans bacteria that is the principal cause tooth decay and cavities.

In a recent clinical study, 12 subjects who rinsed just one time with the experimental mouthwash experienced a nearly complete elimination of the S. mutans bacteria over the entire four-day testing period.

Dental caries, commonly known as tooth decay or cavities, is one of the most common and costly infectious diseases in the United States, affecting more than 50 percent of children and the vast majority of adults aged 18 and older. Americans spend more than $70 billion each year on dental services, with the majority of that amount going toward the treatment of dental caries.

This new mouthwash is the product of nearly a decade of research conducted by Wenyuan Shi, chair of the oral biology section at the UCLA School of Dentistry. Shi developed a new antimicrobial technology called STAMP (specifically targeted anti-microbial peptides) with support from Colgate-Palmolive and from C3-Jian Inc., a company he founded around patent rights he developed at UCLA; the patents were exclusively licensed by UCLA to C3-Jian.

The human body is home to millions of different bacteria, some of which cause diseases such as dental caries but many of which are vital for optimum health. Most common broad-spectrum antibiotics, like conventional mouthwash, indiscriminately kill both benign and harmful pathogenic organisms and only do so for a 12-hour time period.

The overuse of broad-spectrum antibiotics can seriously disrupt the body’s normal ecological balance, rendering humans more susceptible to bacterial, yeast and parasitic infections.

Shi’s Sm STAMP C16G2 investigational drug, tested in the clinical study, acts as a sort of “smart bomb,” eliminating only the harmful bacteria and remaining effective for an extended period.

“With this new antimicrobial technology, we have the prospect of actually wiping out tooth decay in our lifetime,” said Shi, who noted that this work may lay the foundation for developing additional target-specific “smart bomb” antimicrobials to combat other diseases.

Related: full press releaseFalse Teeth For CatsCavity-Fighting LollipopBiologists Identified a New Way in Which Bacteria Hijack Healthy Cells

How Lysozyme Protein in Our Tear-Drops Kill Bacteria

A disease-fighting protein in our teardrops has been tethered to a tiny transistor, enabling UC Irvine scientists to discover exactly how it destroys dangerous bacteria. The research could prove critical to long-term work aimed at diagnosing cancers and other illnesses in their very early stages.

Ever since Nobel laureate Alexander Fleming found that human tears contain antiseptic proteins called lysozymes about a century ago, scientists have tried to solve the mystery of how they could relentlessly wipe out far larger bacteria. It turns out that lysozymes have jaws that latch on and chomp through rows of cell walls like someone hungrily devouring an ear of corn.

“Those jaws chew apart the walls of the bacteria that are trying to get into your eyes and infect them,” said molecular biologist and chemistry professor Gregory Weiss, who co-led the project with associate professor of physics & astronomy Philip Collins.

The researchers decoded the protein’s behavior by building one of the world’s smallest transistors – 25 times smaller than similar circuitry in laptop computers or smartphones. Individual lysozymes were glued to the live wire, and their eating activities were monitored.

“Our circuits are molecule-sized microphones,” Collins said. “It’s just like a stethoscope listening to your heart, except we’re listening to a single molecule of protein.”

It took years for the UCI scientists to assemble the transistor and attach single-molecule teardrop proteins. The scientists hope the same novel technology can be used to detect cancerous molecules. It could take a decade to figure out but would be well worth it, said Weiss, who lost his father to lung cancer.

“If we can detect single molecules associated with cancer, then that means we’d be able to detect it very, very early,” Weiss said. “That would be very exciting, because we know that if we treat cancer early, it will be much more successful, patients will be cured much faster, and costs will be much less.”

The project was sponsored by the National Cancer Institute and the National Science Foundation. Co-authors of the Science paper are Yongki Choi, Issa Moody, Patrick Sims, Steven Hunt, Brad Corso and Israel Perez.

Related: full press releaseWhy ‘Licking Your Wounds’ WorksHow Bleach Kills BacteriaAlgorithmic Self-Assembly

Rats Show Empathy-driven Behavior

Rats free trapped companions, even when given choice of chocolate instead

The experiments, designed by psychology graduate student and first author Inbal Ben-Ami Bartal with co-authors Decety and Peggy Mason, placed two rats that normally share a cage into a special test arena. One rat was held in a restrainer device — a closed tube with a door that can be nudged open from the outside. The second rat roamed free in the cage around the restrainer, able to see and hear the trapped cagemate but not required to take action.

The researchers observed that the free rat acted more agitated when its cagemate was restrained, compared to its activity when the rat was placed in a cage with an empty restrainer. This response offered evidence of an “emotional contagion,” a frequently observed phenomenon in humans and animals in which a subject shares in the fear, distress or even pain suffered by another subject.

While emotional contagion is the simplest form of empathy, the rats’ subsequent actions clearly comprised active helping behavior, a far more complex expression of empathy. After several daily restraint sessions, the free rat learned how to open the restrainer door and free its cagemate. Though slow to act at first, once the rat discovered the ability to free its companion, it would take action almost immediately upon placement in the test arena.

“We are not training these rats in any way,” Bartal said. “These rats are learning because they are motivated by something internal. We’re not showing them how to open the door, they don’t get any previous exposure on opening the door, and it’s hard to open the door. But they keep trying and trying, and it eventually works.”

To control for motivations other than empathy that would lead the rat to free its companion, the researchers conducted further experiments. When a stuffed toy rat was placed in the restrainer, the free rat did not open the door. When opening the restrainer door released his companion into a separate compartment, the free rat continued to nudge open the door, ruling out the reward of social interaction as motivation. The experiments left behavior motivated by empathy as the simplest explanation for the rats’ behavior.

“There was no other reason to take this action, except to terminate the distress of the trapped rats,” Bartal said. “In the rat model world, seeing the same behavior repeated over and over basically means that this action is rewarding to the rat.”

As a test of the power of this reward, another experiment was designed to give the free rats a choice: free their companion or feast on chocolate. Two restrainers were placed in the cage with the rat, one containing the cagemate, another containing a pile of chocolate chips. Though the free rat had the option of eating all the chocolate before freeing its companion, the rat was equally likely to open the restrainer containing the cagemate before opening the chocolate container.

“That was very compelling,” said Mason, Professor in Neurobiology. “It said to us that essentially helping their cagemate is on a par with chocolate. He can hog the entire chocolate stash if he wanted to, and he does not. We were shocked.”

Now that this model of empathic behavior has been established, the researchers are carrying out additional experiments. Because not every rat learned to open the door and free its companion, studies can compare these individuals to look for the biological source of these behavioral differences. Early results suggested that females were more likely to become door openers than males, perhaps reflecting the important role of empathy in motherhood and providing another avenue for study…

Interesting study. My guess is this is the kind of thing those that don’t like science would deride. I believe in the value of science. I believe in the value of learning. I believe that such experiments are what drives science forward. I believe if you want your economy to benefit from investing in science you should be encouraging hundreds and thousands of such experiments. Funding for this study was provided by The National Science Foundation (NSF), and others.

I am thankful that more and more countries are willing to invest in science, especially since the USA is showing an increasing anti-science attitude. I would rather the USA continue to believe in the value of science and other countries looked to increase investments. But, it is much better that other countries increase their interest in science, and willingness to invest in science, to more than make up for the USA’s decisions to reduce the appreciation for science than for the world to just lose do to a decrease in investments in science.

Related: Insightful Problem Solving in an Asian ElephantPigeon Solves Box and Banana ProblemStand with ScienceEliminating NSF Program to Aid K-12 Science EducationThe Importance of Science Education

Stand with Science – Late is Better than Never

The USA public has made very bad decisions in who to send to Washington DC to spend our money (and the money of our children and grandchildren). We have wasted hundreds of billions that could have been spent more wisely. I happen to think investing in science and engineering is important for a societies economic health. The problem the USA has is we have chosen to waste lots of money for decades, at some point you run out of money (yes the USA government doesn’t really, as they can print it, but essentially they do – in practical terms).

I would certainly eliminate tax breaks for trust fund babies and trust fund grandchildren (while your grandchildren are going to be left holding the bag for the spending those elected by us, the grandchildren of the rich often get huge trust funds with no taxes being paid at all). But most of the people we have elected want to give trust fund babies huge payoffs. I would cut much spending in government – spending 5% less in 2020 than we did this year would be fine with me. But we don’t elect people that support that. I would support not adding new extensions to tax cuts sold with false claims and again supported by those we continue to elect. I wouldn’t allow the financial industry subverting of markets. But again we elect people that do allow that. And when the bill comes due for letting them take tens and hundreds of millions in individual profits in the good years, we can either let the economy go into a depression (maybe) or spend hundreds of billions to trillions bailing out those institutions our politicians let threaten the economy.

It might not seem fair, but there are consequences to allowing our political system to waste huge amounts of money paying of special interests for decades. And investing in science and engineering has been a casualty and will likely continue to be. Eventually you run out of money, even for the stuff that matters. Trying to fight for politicians that will put the interests of the country ahead of their donors is not something you can do effectively only when your interests are directly threatened. At that point things may already be too bad to be saved.

I have been writing about the failed political system for quite awhile now. I wrote awhile back that Hillary Clinton’s idea to tripple the number of GRFP awards was something I thought was very smart economically. But even then I questioned if we could afford it, if we refused to do anything else different (just adding new spending isn’t what the country needed).

Even in the state the politicians we continue to elect (we elect the same people election after election – there is no confusion about what they will do) we can debate what to cut and for something we spend so little on as investing science and engineering we can even easily increase that spending and not have any real impact on cutting overall spending. But those we have elected don’t show much interest in investing in science and engineering overall.

The USA continues to invest a good deal in science and engineering. But the difference in focus today versus the 1960’s is dramatic. The USA will continue to do well in the realm of science. The advantages gained over decades leave us in a hugely beneficial position – and one that takes other countries decades to catch up to. Now some countries have been working on that for decades now, and are doing very well. China, hasn’t been at it quite as long but has been making amazingly fast progress (similar to the amazing economic story).

Continue reading