Tag Archives: Funding

Robot Prison Guards in South Korea

photo of robot prison guard

Robotic prison wardens to patrol South Korean prison

The one-month trial will cost 1bn won (£554,000) and is being sponsored by the South Korean government. It is the latest in a series of investments made by the state to develop its robotics industry.

The country’s Ministry of Knowledge Economy said in January that it had spent the equivalent of £415m on research in the sector between 2002 and 2010. It said the aim was to compete with other countries, such as Japan, which are also exploring the industry’s potential.

In October the ministry said the Korean robot market had recorded 75% growth over the past two years and was now worth about £1 billion…

The potential market for robotics is huge. Smart countries are investing in becoming the centers for excellence in that area. Japan and South Korea may well be in the lead. The USA, Germany and China also have strong communities.

Related: Robot Finds Lost Shoppers and Provides DirectionsThe Robotic Dog (2008 post)Soft Morphing Robot FutureHonda’s Robolegs Help People WalkRoachbot: Cockroach Controlled Robot

Russia Launches Mars Moon Probe

Russians launch Mars moon probe

Russia has launched an audacious bid to scoop up rock and dust samples from the Martian moon Phobos and bring them back to Earth for study.

Moscow has despatched a total of 16 missions to the Red Planet since the 1960s. None has successfully completed its goals, with the most recent endeavour – the sophisticated Mars-96 spacecraft – being destroyed in a failed launch.

Once on the surface, a robotic arm will pick up samples of the regolith (“soil”). Some of this material will be analysed there and then, but a portion of it – about 200g – will be transferred to a canister for return to Earth.

This canister and its departure stage should be sent home within a few days of Phobos-Grunt’s arrival on the moon. All being well, the canister should fall to Earth in the Kazakh desert in August 2014.

Potato-shaped Phobos is a fascinating target. Although it has been studied extensively by passing satellites, it still holds many secrets – not just about itself, but also the planet below.

The mission also is carrying a Chinese satellite that will be launched into orbit around Mars. This mission shows the future of space exploration. The USA continues to reduce the funding for space exploration while countries such as China are greatly increasing their funding.

I expect the leading space exploration will become much more global and the USA will take a less prominent role as the USA decides to spend funds elsewhere instead of scientific missions in space. Politicians in the USA have also stopped NASA from collaborating internationally which further reduces the USA role in the future of scientific research in space.

Russia seems to be making a new push to invest in space after a period of reduced funding. Russia’s economy still has many weaknesses, but in the last decade the oil wealth has provided some wealth and Russia is interested in using some of those funds for space exploration.

Update: This attempt failed also, making Russia 0 for 17 on Mars attempts. In the last few years Russia has shown a renewed interest in investing in space exploration. But their struggles show that it isn’t easy to in effect restart a program. Space exploration requires a great deal of very complex work. I hope they can get back on track and efforts in other countries also do well: China, Japan…

Related: NASA’s Mars Curiosity RoverMagnetic Portals Connect Sun and EarthGreat Astronaut Self Portrait

Eliminating NSF Program to Aid K-12 Science Education

Changing American science and engineering education

In exchange for funding for their graduate studies, Kahler and other fellows contribute to the science curriculum in local primary and secondary schools from kindergarten through grade 12. Kahler taught science at Rogers-Herr Middle School in Durham.

He also taught for two summers in India, and in Texas, as part of Duke TIP, the Talent Identification Program, which identifies academically gifted students and provides them with intellectually stimulating opportunities.

Through these teaching experiences in different locations and cultures, Kahler observed several factors that affect the quality of education in American schools. One important factor is the training of teachers. Unfortunately, teachers are sometimes expected to teach science without having received an adequate background in the subject.

STEM fellows helped to address this problem by contributing their expertise and by helping to increase the scientific literacy of students and their teachers.

Kahler says that NSF GK-12 has a strong, positive impact to change this because it simultaneously improves the educational experience of students in primary and secondary school and trains graduate students to communicate and teach effectively.

Unfortunately, the NSF GK-12 program is no longer in the NSF budget for 2012.

Sadly the USA is choosing to speed money on things that are likely much less worthwhile to our future economic well being. This has been a continuing trend for the last few decades so it is not a surprise that the USA is investing less and less in science and engineering education while other countries are adding substantially to their investments (China, Singapore, Korea, India…).

As I have stated before I think the USA is making a big mistake reducing the investment in science and engineering, especially when so many other countries have figured how how smart such investments are. The USA has enjoyed huge advantages economically from science and engineering leadership and will continue to. But the potential full economic advantages are being reduced by our decisions to turn away from science investment (in education and other ways).

Related: The Importance of Science EducationTop Countries for Science and Math Education: Finland, Hong Kong and KoreaEconomic Strength Through Technology Leadership

Bill Dietrich Gives Carnegie Mellon University $265 Million

Carnegie Mellon is one of the crown jewels of engineering in the USA. While we are busy squandering the economic gains gained through science and engineering investments in the 1950’s, 60’s and 70’s a few universities are continuing to provide huge economic benefit: MIT, Stanford, CalTech, Harvard, University of Wisconsin – Madison… Schools unfortunately seem to be wasting lots of money (on vanity projects and ever increasing administration, and huge pay to overpaid executives), but even so they provide much much more benefit than the costs. Funding from rich, successful businesspeople (Bill Dietrich was a steel executive) is now a huge reason these shiny lights of the American economy continue to shine. On Bill Dietrich’s donation:

This fund, which will become operational upon Dietrich’s passing, will serve as a catalyst for the university’s global initiatives and for its fusion of left-brain and right-brain thinking, such as studies connecting technology and the arts, as well as support future academic initiatives across the university, including undergraduate and graduate programs, scholarship, artistic creation and research.
The gift furthers the university’s ability to educate students in strong interdisciplinary problem-solving and supports the unique recipe for education offered by Carnegie Mellon’s seven schools and colleges, all of which are leaders in their fields.

Dietrich’s gift, among the 10 largest in the United States, is believed to be the 14th largest gift to higher education worldwide.

Related: Board of Trustees gets new chairperson: Dietrich (July 2001 article)$400 Million More for Harvard and MITEconomic Strength Through Technology LeadershipStanford Gets $75 Million for Stem Cell CenterGreat Engineering Schools and Entrepreneurism

The Politics of Anti-Science

In the 1960’s the USA had an unrealistic view of how much studying and learning about science and engineering could do. Investing is science and engineering is an extremely wise economic (and cultural) endeavor but it isn’t going to solve all the problems that exist. Somehow today we find ourselves with a large number of politically powerful people we take strong anti-science positions. These tactics reduce funding and support for beneficial research and are short sited approaches to public administration. This is an unfortunate turn of events that is damaging the American economy and will have huge damages going forward.

Thankfully other countries have seen how wise investing in science and engineering is and have more than taken up the slack created by the anti-science community. Two favorite tactics of the anti-science leaders is to try and create confusion where there is none and to turn the focus away from serious matters and instead playing silly political games. The silly games will draw donors and voters so if they care about those things more than the country and the future of the country it is a sound tactic. The damage it causes the country however I would hope would limit the use of such tactics however that has not been the case recently.

‘Shrimp On A Treadmill’: The Politics Of ‘Silly’ Studies

Take the case of the “shrimp on a treadmill.” Burnett says the senator’s report linked that work to a half-million-dollar research grant. But that money actually went to a lot of different research that he and his colleagues did on this economically important seafood species.

The treadmills were just a small part of it, a way to measure how shrimp respond to changes in water quality. Burnett says the first treadmill was built by a colleague from scraps and was basically free, and the second was fancier and cost about $1,000. The senator’s report was misleading, says Burnett, “and it suggests that much money was spent on seeing how long a shrimp can run on a treadmill, which was totally out of context.”

John Hart, a Coburn spokesperson, said in an email that “our report never claimed all the money was spent on shrimp on a treadmill. The scientists doth protest too much. Receiving federal funds is a privilege, not a right. If they don’t want their funding scrutinized, don’t ask.”

What the politicians are doing is exactly what this spokesperson suggests – they are withdrawing from the anti-science culture created by some in Washington: they are moving their research to countries that support rather than attack science. That is a very bad thing for the USA. There are a number of very bad economic policies a government can take. Driving scientists and engineers into the arms of other countries is one of the worst.
Continue reading

Google Invests $168 million in Largest Solar Tower Power Project

Google is investing in a new solar tower power project located in California that will generate 392 gross MW of clean, solar energy. That’s the equivalent of taking more than 90,000 cars off the road. Google has now invested $250 million in clean energy.

Investing in the world’s largest solar power tower plant

works by using a field of mirrors, called heliostats, to concentrate the sun’s rays onto a solar receiver on top of a tower. The solar receiver generates steam, which then spins a traditional turbine and generator to make electricity. Power towers are very efficient because all those mirrors focus a tremendous amount of solar energy onto a small area to produce steam at high pressure and temperature (up to 1000 degrees F).

Several large solar projects are in the works in the sunny Southwest (and around the globe), but Ivanpah will be the first solar power tower system of this scale. The Ivanpah Power Tower will be approximately 450 feet tall and will use 173,000 heliostats, each with two mirrors.

The Department of energy is also providing financing for this project. The project is 10 times larger than the largest solar photovoltaic project in California.

Related: Google Investing Huge Sums in Renewable Energy and is HiringGoogle.org Invests $10 million in Geothermal EnergyGoogle’s Energy InterestsMolten Salt Solar Reactor Approved by CaliforniaSolar Tower Power GenerationFinding Huge Sources of Energy Without Increasing Carbon Dioxide Output

Wave Disk Engine Could Increase Efficiency 5 Times

Norbert Müller’s group has received $2.5 million from the U.S. Department of Energy Advanced Research Projects Agency-Energy (ARPA-E) in 2010 to build and develop the wave disk engine, which uses turbo combustion “shock wave” technology to convert either liquid fuel or compressed natural gas or hydrogen into electrical power. With this engine, fuel efficiency for hybrid vehicles could increase 5 times compared to internal combustion engine vehicles on the road today (and 3.5 times less than current hybrid cars), while reducing costs by 30%. The goal of Müller’s team is to produce an engine that would give hybrid vehicles a 500-mile driving range and reduce carbon dioxide emissions by as much as 90%.

In the video he says they hope to have the engines in production vehicles within 3 years. My guess is he is being quite optimistic, but we will see. The new engine would allow 1,000 pounds to be removed from the weight of cars (by removing the need for drive train, radiator…).

Related: $10 Million X Prize for 100 MPG CarEconomic Benefits Brought by Investing in Engineering59 MPG Toyota iQ Diesel Available in Europe (2008)MIT Hosts Student Vehicle Design Summit (2006)

$60 Million in Grants for Undergraduate Science Education

The Howard Hughes Medical Institute (HHMI) is challenging colleges and universities to think creatively about how they educate future scientists, science teachers, and a scientifically-literate public. The Institute has invited 215 undergraduate-focused colleges and universities from across the country to apply for a total of $60 million in science education grants. I am very happy that HHMI continues to help provide support for science education.

Sadly USA government leaders (local and national) have chosen to cut the importance they place on science education over the last few decades we have coasted on the gains we made in the 1960s and 1970s. That is no way to succeed. Thankfully a few foundations, with HHMI probably leading the way, and some great schools have kept the USA in a leadership position, but that leadership shrinks each year. And at the primary and secondary school level the USA dropped far back in the pack decades ago for science eduction The top countries in primary and secondary science education are now Finland, Hong Kong and Korea.

Since 1988, the Howard Hughes Medical Institute has awarded $820 million to 264 colleges and universities to support science education. Those grants have generally been awarded through two separate but complementary efforts, one aimed at undergraduate-focused institutions and the other at research universities. HHMI support has enabled more than 80,000 students nationwide to work in research labs and developed programs that have helped 95,000 K-12 teachers learn how to teach science more effectively.

The new grants will range from $800,000 to $1.6 million over four years for individual institutions and up to $4.8 million over four years for those applying jointly.

Related: Science Courses for the Next Generation$60 Million for Science Teaching at Liberal Arts Colleges in 2008The Importance of Science EducationGenomics Course For College Freshman Supported by HHMI at 12 Universities$600 Million for Basic Biomedical ResearchScience and technology leadership

The biggest change in the new 2012 competition is the requirement that applicants focus on a single educational goal that unites their proposed science education program. In the past, HHMI’s grants have allowed applicants to submit projects in four categories: student research, faculty development, curriculum and laboratory development, and outreach. Although schools were not expected to put forward a program in every category, Asai notes the modular design of the grant competition often led schools to “check the boxes” rather than encouraging them to think strategically about how these activities can help them reach an overarching science education objective.
Continue reading

Google Summer of Code is Accepting Application Now

Google Summer of Code 2011 is accepting applications. This is a great initiative I have highlighted previously: Google Summer of Code 2009, Google Summer of Code 2008. The deadline for applications is April 8th.

Google Summer of Code is a program that offers student developers stipends to write code for various open source projects. The program has brought together over 4,500 students with over 300 open source projects, to create millions of lines of code. Participants (including students and mentors) have represented over 85 countries. The program, which kicked off in 2005, is now in its seventh year.

Participating organizations include: R Project for Statistical Computing, Debian Project, WordPress and the Marine Biological Laboratory. (9 of the 175 participating organizations list Ruby as part of their project :-).

For 2010 the effort had a budget of $5,000,000 and accepted 1026 students partnering with 150 Open Source organizations. This year they plan on 1,150 – 1,200 student positions. For 2007 they had 6,200 applications and 7,000 in 2008. I don’t see any data on applicants for 2009.

As for the application it should include the following: your project proposal, why you’d like to execute on this particular project, and the reason you’re the best individual to do so. Your proposal should also include details of your academic, industry, and/or open source development experience, and other details as you see fit. An explanation of your development methodology is a good idea, as well.

Related: Engineering Majors Hold 8 of Top 10 Highest Paid MajorsHow To Become A Software Engineer/Programmerposts from my management blog on software development

Why Do People Invest Large Amounts of Time and Money?

According to Neil deGrasse Tyson the reasons people/societies take on huge expenditures (Great Wall of China, Manhattan project, Apollo space missions, Spanish ocean exploration, TVA, Egyptian pyramids, Cathedrals):

  1. defense/war
  2. economic return
  3. veneration to power

“The urge to discover is not there, I wish it were it is just not.” Many countries have figured out the economic benefits of large investments of science and engineering: China, Singapore, Korea… Europe and the USA are limiting such investments while continuing less useful spending. I think the results will be very obvious 20 years from now. It isn’t that the USA and Europe are not making such investments, they are, but at a much lower rate than probably is wise economically.

Related: Neil Degrasse Tyson: Scientifically Literate See a Different WorldVaccines Can’t Provide Miraculous Results if We Don’t Take ThemNanotechnology Investment as Strategic National Economic PolicyEconomic Strength Through Technology Leadership