Tag Archives: green

Electricity Savings

Surprise: Not-so-glamorous conservation works best

When high school science teacher Ray Janke bought a home in Chicopee, Mass., he decided to see how much he could save on his electric bill.

He exchanged incandescent bulbs for compact fluorescents, put switches and surge protectors on his electronic equipment to reduce the “phantom load” – the trickle consumption even when electronic equipment is off – and bought energy-efficient appliances.

Two things happened: He saw a two-thirds reduction in his electric bill, and he found himself under audit by Mass Electric. The company thought he’d tampered with his meter. “They couldn’t believe I was using so little,” he says.

Cutting back on electricity used for lighting (9 percent of residential usage nationwide) presents the quickest savings-to-effort ratio. The EPA estimates that changing only 25 percent of your home’s bulbs can cut a lighting bill in half. Incandescent bulbs waste 90 percent of their energy as heat, and compact fluorescents, which can be up to five times more efficient, last years longer as well.

I am far from doing everything I could, but at least I have installed compact fluorescent light bulbs as old ones burned out. Actually I don’t think I have changed a light bulb in several years (another benefit of these energy efficient lights is they last a long time).

Related: Engineers Save EnergyWind PowerMillennium Technology Prize for LED lights…MIT’s Energy ‘Manhattan Project’$10 Million for Science Solutions

Wind Power

Wind Power graph

Graph of wind power capacity in the USA from 1981 – 2005 (from 10 Megawatts to 9,149 megawatts).

From the American Wind Energy Association:

The only other countries around the world that have more wind power installed are Germany (19,140 MW as of the end of June), and Spain (10,728 MW).

AWEA expects the U.S. to pass the 15,000 MW mark by the end of 2007 and can have 25,000 MW installed by the end of 2010, with the proper policies in place. At this growth rate, the U.S. could have 100,000 MW installed by 2020, which would provide the nation with approximately 6% of its future power needs, about as much as hydropower provides today.

Related: Wind Power Technology BreakthroughGE’s Edison Desk BlogSolar Tower Power Generation

Solar Tower Power Generation

How Australia got hot for solar power

In Australia Enviromission looking to build a 1,600-foot tall “solar tower” that can power 100,000 homes.

The tower will be over there,” Davey says, pointing to a spot a mile distant where a 1,600-foot structure will rise from the ocher-colored earth. Picture a 260-foot-diameter cylinder taller than the Sears Tower encircled by a two-mile-diameter transparent canopy at ground level. About 8 feet tall at the perimeter, where Davey has his feet planted, the solar collector will gradually slope up to a height of 50 to 60 feet at the tower’s base.

Acting as a giant greenhouse, the solar collector will superheat the air with radiation from the sun. Hot air rises, naturally, and the tower will operate as a giant vacuum. As the air is sucked into the tower, it will produce wind to power an array of turbine generators clustered around the structure.

The result: enough clean, green electricity to power some 100,000 homes without producing a particle of pollution or a wisp of planet-warming gases.

View Discovery Channel segment on EnviroMission

Wind Power Technology Breakthrough

China Makes Huge Breakthrough in Wind Power Technology by Zijun Li:

Chinese developers unveiled the world’s first full-permanent magnetic levitation (Maglev) wind power generator at the Wind Power Asia Exhibition 2006 held June 28 in Beijing, according to Xinhua News.

The Maglev generator is expected to boost wind energy generating capacity by as much as 20 percent over traditional wind turbines. This would effectively cut the operational expenses of wind farms by up to half, keeping the overall cost of wind power under 0.4 yuan (5 cents US), according to Guokun Li, the chief scientific developer of the new technology. Further, the Maglev is able to utilize winds with starting speeds as low as 1.5 meters per second (m/s), and cut-in speeds of 3 m/s, the chief of Zhongke Energy was quoted as saying at the exhibition. When compared with the operational hours of existing wind turbines, the new technology will add an additional 1,000 hours of operation annually to wind power plants in areas with an average wind speed of 3 m/s.

MIT Hosts Student Vehicle Design Summit

Solar concept car drawing

Student summit set on vehicle design by Deborah Halbe

Seventy-three students from 21 universities around the world will gather at MIT this summer to design and build between five and 10 commuter vehicles that exploit human power, biofuels, solar technologies and fuel cells to travel at least 500 miles per gallon of fuel.

An added goal for the June 13-Aug. 13 program is to lay a foundation for ongoing multidisciplinary transportation research involving all five MIT schools. “We hope to create a project-based, socially conscious engineering curriculum for the ’06-’07 academic year,” said Anna S. Jaffe, a junior in civil and environmental engineering and one of the summit student organizers.

Image by Mitchell Joachim and William Lark, sketch of a concept solar car was created for the MIT Vehicle Design Summit.

Strawjet: Invention of the Year, 2006

Invent Now 2006 Modern Marvel of the Year (links all broken by History Channel, so links were removed, – when will we finally have people in charge of websites that understand basic usability fundamentals?):

The Strawjet is a farm implement that processes straw (wheat, flax, sunflower, tobacco, hemp, etc.) in the field (after the plant has been harvested) into a mat, similar to a large bamboo window blind. This is used to construct composite building panels in much the same way as fiberglass or carbon fiber; however, the Strawjet uses a binder made from paper pulp, clay and cement rather than plastic resin.

Update, 2013: strawjet.com. Also I added this webcast from 2009

Read (except they broke all the links so you can’t) about more finalists in the History Channel and Invent Now Inventor contest:

  • Dr. David L. Cull, Hemoaccess Valve System
  • Kristin A. Hrabar, Illuminated Nutdriver
  • Dr. Sundaresan Jayaraman, Wearable Motherboard (Smart Shirt)
  • Robert C. Kelly, Resc-hue Lite Line

Related: Pay as You Go Solar in IndiaAppropriate Technology: Solar Water in Poor Cairo NeighborhoodsLemelson-MIT 2010 Award for Sustainability – Play pumps had the idea of putting a merry-go-round on the site and letting children playing on it provide the energy… The solution does not appear to have been executed well.