Tag Archives: k-12 students

National Girls Collaborative Project for STEM

The National Girls Collaborative Project for science, technology, engineering, and mathematics (STEM) collaborates with those seeking to increase the participation of girls in STEM feeder activities. The goal is to encourage girls to pursue careers in science, technology, engineering, and math.

Collaboration as a Means to Building Capacity: Results and Future Directions of the National Girls Collaborative Project:

The purpose of the NGCP is to extend the capacity, impact, and sustainability of
existing and evolving girl-serving STEM projects and programs. The NGCP is structured to bring organizations together to compare needs and resources, to share information, and to plan strategically to expand STEM–related opportunities for girls.

Although we are still refining it, the NGCP collaborative model has shown its effectiveness through increased collaboration and minigrant projects with sustained results. As we have described, the success to date of the NGCP in developing collaborations has been demonstrated via data from the collaboration rubric, mini-grant reports, and metrics that show how collaborative activities have increased over the duration of the NGCP projects. As NGCP expands over the next few years to provide regional collaboratives across the entire United States and Puerto Rico, we will continue our assessment of its impact and hope to be able to report its influence on building capacity to attract and retain girls in STEM.

I support programs encouraging STEM activities for girls – and boys. NSF data shows for 2005 shows women outnumbered men in undergraduate degree in science and engineering. For post-graduate degrees men still outnumbering women but that gap has been reducing and seems like it will continue to. And the representations in the workplace seem poised to continue to show a reducing number of men and increasing number of women. Engineering is an example of an area with far more men than women graduating – the imbalance is equivalent to the imbalance the other way for psychology.

Related: Girls Sweep Top Honors at Siemens Competition in Math, Science and TechnologyFIRST Robotics in MinnesotaKids in the Lab: Getting High-Schoolers Hooked on Science

Seventh-grader’s Solar Cell Research

photo of William Yuan

Seventh-grader shines with solar cell research

Yuan worked on his project for the past two years with the encouragement of his science teacher Susan Duncan; support of his parents Gang Yuan and Zhiming Mei; and counsel of professional mentors Professor Chunfei Li of Portland State University’s Center for Nanofabrication and Electron Microscopy, Fred Li of Applied Materials Inc. and Professor Shaofan Li of the Department of Civil Engineering at the University of California – Berkeley.

“He is our youngest fellow in science that we’ve ever had,” Moessner said. “He is really spectacular. “His project will really make a difference in advancing the technology of solar cells. You would never know he’s 12 looking at the quality of his work.”

Beaverton boy lauded for solar cell invention

there have been many questions about the research by William Yuan. Some have even questioned whether he copied the research of others and claimed it as his own. That is far from the case. Yuan fully documented all of his sources and never tried to imply that he invented the 3D solar cell. He did create a new type of 3D solar cell that works for visible and UV light

William Yuan was awarded a 2008 Davidson Fellow award

In his project, “High Efficient 3-Dimensional Nanotube Solar Cell for Visible and UV Light,” William invented a novel solar panel that enables light absorption from visible to ultraviolet light. He designed carbon nanotubes to overcome the barriers of electron movement, doubling the light-electricity conversion efficiency. William also developed a model for solar towers and a computer program to simulate and optimize the tower parameters. His optimized design provides 500 times more light absorption than commercially-available solar cells and nine times more than the cutting-edge, three-dimensional solar cell.

Related: Solar Thermal in Desert, to Beat Coal by 2020Super Soaker Inventor Aims to Cut Solar Costs in HalfEngineering Student Contest Winners Design Artificial Limbposts on engineers

High School Student Isolates Microbe that Eats Plastic

WCI student isolates microbe that lunches on plastic bags

Daniel Burd’s project won the top prize at the Canada-Wide Science Fair in Ottawa. He came back with a long list of awards, including a $10,000 prize, a $20,000 scholarship, and recognition that he has found a practical way to help the environment.

First, he ground plastic bags into a powder. Next, he used ordinary household chemicals, yeast and tap water to create a solution that would encourage microbe growth. To that, he added the plastic powder and dirt. Then the solution sat in a shaker at 30 degrees.

After three months of upping the concentration of plastic-eating microbes, Burd filtered out the remaining plastic powder and put his bacterial culture into three flasks with strips of plastic cut from grocery bags. As a control, he also added plastic to flasks containing boiled and therefore dead bacterial culture.

Six weeks later, he weighed the strips of plastic. The control strips were the same. But the ones that had been in the live bacterial culture weighed an average of 17 per cent less.

The inputs are cheap, maintaining the required temperature takes little energy because microbes produce heat as they work, and the only outputs are water and tiny levels of carbon dioxide — each microbe produces only 0.01 per cent of its own infinitesimal weight in carbon dioxide, said Burd.

“This is a huge, huge step forward . . . We’re using nature to solve a man-made problem.” Burd would like to take his project further and see it be used. He plans to study science at university, but in the meantime he’s busy with things such as student council, sports and music.

Related: Bacteria Survive On All Antibiotic DietMicrobes May Use Chemicals to Compete for FoodSiemens Westinghouse Competition Winners 2005