Tag Archives: Life Science

Evidence of Extraterrestrial Life Discovered?

Has evidence of extraterrestrial life been discovered? In Fossils of Cyanobacteria in CI1 Carbonaceous Meteorites , Richard B. Hoover, Ph.D. NASA/Marshall Space Flight Center, puts forth his evidence on the discovery of evidence of cyanobacteria in meteorites.

Dr. Hoover has discovered evidence of microfossils similar to Cyanobacteria, in freshly fractured slices of the interior surfaces of the Alais, Ivuna, and Orgueil CI1 carbonaceous meteorites. Based on Field Emission Scanning Electron Microscopy (FESEM) and other measures, Dr. Hoover has concluded they are indigenous to these meteors and are similar to trichomic cyanobacteria and other trichomic prokaryotes such as filamentous sulfur bacteria. He concludes these fossilized bacteria are not Earthly contaminants but are the fossilized remains of living organisms which lived in the parent bodies of these meteors, e.g. comets, moons, and other astral bodies. The implications are that life is everywhere, and that life on Earth may have come from other planets.

The importance of this claim is hard to ignore. The journal includes a statement from Dr. Rudy Schild, Center for Astrophysics, Harvard-Smithsonian, Editor-in-Chief, Journal of Cosmology:

Dr. Richard Hoover is a highly respected scientist and astrobiologist with a prestigious record of accomplishment at NASA. Given the controversial nature of his discovery, we have invited 100 experts and have issued a general invitation to over 5000 scientists from the scientific community to review the paper and to offer their critical analysis. Our intention is to publish the commentaries, both pro and con, alongside Dr. Hoover’s paper. In this way, the paper will have received a thorough vetting, and all points of view can be presented. No other paper in the history of science has undergone such a thorough analysis, and no other scientific journal in the history of science has made such a profoundly important paper available to the scientific community, for comment, before it is published. We believe the best way to advance science, is to promote debate and discussion.

Read the full paper.

The filaments have been observed to be embedded in freshly fractured internal surfaces of the stones. They exhibit features (e.g., the size and size ranges of the internal cells and their location and arrangement within sheaths) that are diagnostic of known genera and species of trichomic cyanobacteria and other trichomic prokaryotes such as the filamentous sulfur bacteria. ESEM and FESEM studies of living and fossil cyanobacteria show similar features in uniseriate and multiseriate, branched or unbranched, isodiametric or tapered, polarized or unpolarized filaments with trichomes encased within thin or thick external sheaths. Filaments found in the CI1 meteorites have also been detected that exhibit structures consistent with the specialized cells and structures used by cyanobacteria for reproduction (baeocytes, akinetes and hormogonia), nitrogen fixation (basal, intercalary or apical heterocysts) and attachment or motility (fimbriae).

These studies have led to the conclusion that the filaments found in the CI1 carbonaceous meteorites are indigenous fossils rather than modern terrestrial biological contaminants that entered the meteorites after arrival on Earth. The δ13C and D/H content of amino acids and other organics found in these stones are shown to be consistent with the interpretation that comets represent the parent bodies of the CI1 carbonaceous meteorites. The implications of the detection of fossils of cyanobacteria in the CI1 meteorites to the possibility of life on comets, Europa and Enceladus are discussed.

Has life been found in a meteorite? by Phil Plait
Continue reading

Lobopodians from China a Few Million Years Ago

image of a lobopodian fosil nicknamed the walking cactus

image of a lobopodian fosil from Nature

Cactus Walking On 20 Legs Found In China

There was a wild period — roughly 520 million years ago — when life, for no obvious reason, burst into a crazy display of weird new fantastic forms — producing creatures in shapes never seen before or since. Consider this animal, the newest fossil discovery from Jianni Liu in China. She calls it “the walking cactus.”

This is not a plant, not a sculpture. It was a live animal, with no eyes, what may or may not be a head, mostly a gaggle of limbs, armor-plated, covered in thorns, attached to a stomach.

What is it? Taxonomically, Jianni Liu thinks it’s a lobopodian, a group of animals described as “worms with legs.” Lobopodians are about the craziest looking critters that ever lived. A whole zoo of them appear in the rocks around Chengjiang, China.

All we know, says Richard Fortey in his classic history Life, is that a long time ago, the first of these strange animals popped into view and for a short while “there was a chain reaction, unstoppable once it started, a bacchanalia of zoological inventiveness, which has never been matched again.”

Every living thing on earth today is what’s left over from that amazing burst of forms. It’s true we now live on land and in the air, not just in the sea. We have grasses and flowers and beetles in more varieties than you can imagine, and yet, in some deep architectural way, the developmental paths were set way back then, 500 million years ago. The Walking Cactus is just another souvenir of that crazy moment.

Very cool. Actual science is so full of such interesting things. The Cambrian explosion of life, about 540-490 million years ago, marked the beginning of complex life on earth. Before Cambrian, the sea floor was covered by microbial mats. By the end of the period, burrowing animals had destroyed the mats through bioturbation, and gradually turned the seabeds into what they are today. Generally it is accepted that there were no land plants at this time, although it is likely that a microbial “scum” comprising fungi, algae, and possibly lichens covered the land.

Complex organisms gradually became more common in the millions of years immediately preceding the Cambrian, but it was not until this period that mineralized (readily fossilized) organisms became common. Before about 580 million years ago, most organisms were simple, composed of individual cells occasionally organized into colonies. Over the following 70 or 80 million years the rate of evolution accelerated by an order of magnitude (as defined in terms of the extinction and origination rate of species) and the diversity of life began to resemble today’s.

Related: 500 Million-year-old Stromatolite FossilFossils of Sea MonsterDinosaur Remains Found with Intact Skin and TissueAncient Whale Uncovered in Egyptian DesertSouth African Fossils Could be New Hominid Species

MIT Engineers Design New Type of Nanoparticle for Vacines

MIT engineers have designed a new type of nanoparticle that could safely and effectively deliver vaccines for diseases such as HIV and malaria. The new particles, described in the Feb. 20 issue of Nature Materials, consist of concentric fatty spheres that can carry synthetic versions of proteins normally produced by viruses. These synthetic particles elicit a strong immune response – comparable to that produced by live virus vaccines – but should be much safer, says Darrell Irvine, author of the paper and an associate professor of materials science and engineering and biological engineering.

Such particles could help scientists develop vaccines against cancer as well as infectious diseases. In collaboration with scientists at the Walter Reed Army Institute of Research, Irvine and his students are now testing the nanoparticles’ ability to deliver an experimental malaria vaccine in mice.

Vaccines protect the body by exposing it to an infectious agent that primes the immune system to respond quickly when it encounters the pathogen again. In many cases, such as with the polio and smallpox vaccines, a dead or disabled form of the virus is used. Other vaccines, such as the diphtheria vaccine, consist of a synthetic version of a protein or other molecule normally made by the pathogen.

When designing a vaccine, scientists try to provoke at least one of the human body’s two major players in the immune response: T cells, which attack body cells that have been infected with a pathogen; or B cells, which secrete antibodies that target viruses or bacteria present in the blood and other body fluids.

For diseases in which the pathogen tends to stay inside cells, such as HIV, a strong response from a type of T cell known as “killer” T cell is required. The best way to provoke these cells into action is to use a killed or disabled virus, but that cannot be done with HIV because it’s difficult to render the virus harmless.

To get around the danger of using live viruses, scientists are working on synthetic vaccines for HIV and other viral infections such as hepatitis B. However, these vaccines, while safer, do not elicit a very strong T cell response. Recently, scientists have tried encasing the vaccines in fatty droplets called liposomes, which could help promote T cell responses by packaging the protein in a virus-like particle. However, these liposomes have poor stability in blood and body fluids.

Irvine, who is a member of MIT’s David H. Koch Institute for Integrative Cancer Research, decided to build on the liposome approach by packaging many of the droplets together in concentric spheres. Once the liposomes are fused together, adjacent liposome walls are chemically “stapled” to each other, making the structure more stable and less likely to break down too quickly following injection. However, once the nanoparticles are absorbed by a cell, they degrade quickly, releasing the vaccine and provoking a T cell response.

read the full press release

Related: New and Old Ways to Make Flu VaccinesEngineering Mosquitoes to be Flying VaccinatorsNew nanoparticles could improve cancer treatmentVaccines Can’t Provide Miraculous Results if We Don’t Take Them

Most Genes? A crustacean the size of a grain of rice

photo of Daphnia, a crustacean

“Daphnia are ubiquitous in freshwater ponds and lakes and are often used to assess the health of ponds. Since the creature is so well studied by ecologists, knowing its genetics should reveal a lot about how genes respond to different environments.

The first scientists to describe Daphnia thought they were a kind of flea because they assumed the red color came from sucking blood as fleas do. It turns out they’re not bloodsuckers – they’re blood makers. Daphnia have genes that make hemoglobin, so when the animal is stressed out, those genes switch on and the animal looks red.

In fact Daphnia have an astonishingly large number of genes. “We count more than 31,000 genes,” says [John] Colbourne. By comparison, the human genome has more like 23,000 genes. If Guinness tracks such things, Daphnia would hold the record for the most genes of any animal studied to date.

“Many of those genes – we estimate around 35 percent of them – are brand new to science,”

Daphnia can grow its own spear and helmet when threatened by an attacker

Related: Our Genome Changes as We AgeAmazing Designs of LifeOne Species’ Genome Discovered Inside Another SpeciesBdelloid Rotifers Abandoned Sex 100 Million Years Ago

Video showing malaria breaking into cell

Malaria caught on camera breaking and entering cell [the broken link has been removed]

The Plasmodium parasite responsible for malaria is transmitted by the bite of infected mosquitoes, and is thought to kill almost 1 million people worldwide each year.

Jake Baum at the Walter and Eliza Hall Institute of Medical Research in Melbourne, Australia, and colleagues used transmission electron microscopy and 3D immuno-fluorescence microscopy to record a series of still images during the 30-second-long invasion, and combined them into a movie.

Related: Parasites in the Gut Help Develop a Healthy Immune SystemParasite Rex

Scientific Inquiry: Arsenic for Phosphorus in Bacteria Cells

As would be expected with significant new scientific claims, scientists are examining the evidence. On her blog, Rosie Redfield, who runs a microbiology research lab in the Life Sciences Centre at the University of British Columbia, disputes NASA’s recent claims. This is how science is suppose to work. Scientists provide evidence. Other scientists review the evidence, try to verify the claims with experiments of their own and the scientific inquiry process moves toward new knowledge.

Arsenic-associated bacteria (NASA’s claims)

NASA’s shameful analysis of the alleged bacteria in the Mars meteorite made me very suspicious of their microbiology, an attitude that’s only strengthened by my reading of this paper. Basically, it doesn’t present ANY convincing evidence that arsenic has been incorporated into DNA (or any other biological molecule).

The authors then grew some cells with radioactive arsenate (73-As) and no phosphate, washed and dissolved them, and used extraction with phenol and phenol:chloroform to separate the major macromolecules. The protein fraction at the interface between the organic and aqueous phases had about 10% of the arsenic label but, because the interface material is typically contaminated with liquid from the aqueous phase, this is not good evidence that the cells’ protein contained covalently-bound arsenate in place of phosphorus. About 75% of the arsenic label was in the ‘supernatant ‘fraction. The authors describe this fraction as DNA/RNA, but it also contains most of the small water-soluble molecules of the cell, so its high arsenic content is not evidence that the DNA and RNA contain arsenic in place of phosphorus. The authors use very indirect evidence to argue that the distribution of arsenic mirrors that expected for phosphate, but this argument depends on so many assumptions that it should be ignored.

I don’t know whether the authors are just bad scientists or whether they’re unscrupulously pushing NASA’s ‘There’s life in outer space!’ agenda. I hesitate to blame the reviewers, as their objections are likely to have been overruled by Science’s editors in their eagerness to score such a high-impact publication.

New claims have to provide strong evidence. time will tell if this discovery is actually a discovery. It will be amazing if it is, so I am pulling for it. But the story will need to have much more confirmation before we can be certain.

Arsenate-based DNA: a big idea with big holes

The study published in Science has a number of flaws. In particular, one subtle but critical piece of evidence has been overlooked, and it demonstrates that the DNA in question actually has a phosphate – not an arsenate -backbone.

Wolfe-Simon et al. used a technique called nanoSIMS to analyze elemental concentrations of the agarose gel at the location of the DNA band. They determined that the part of the gel containing DNA also contained both arsenic and phosphorus. But what did they really analyze?

The answer is that the nanoSIMS determined the concentration of arsenic in the gel – not specifically in the DNA.

Finally, there’s a simple experiment that could resolve this debate: analyze the nucleotides directly. Show a mass spectrum of DNA sequences demonstrating that nucleotides contain arsenate instead of phosphate. This is a very simple experiment, and would be quite convincing – but it has not been performed.

Related: It’s not an arsenic-based life formMono Lake bacteria build their DNA using arsenicClose Encounters of the Media Kind

Changing Life as We Know It

Update: Independent researchers find no evidence for arsenic life in Mono Lake

NASA has made a discovery that changes our understanding of the very makeup of life itself on earth. I think my favorite scientific discipline name is astrobiology. NASA pursues a great deal of this research not just out in space but also looking at earth based life. Their astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth.

photo of Felisa Wolfe-Simon

Felisa Wolfe-Simon processing mud from Mono Lake to inoculate media to grow microbes on arsenic.

Carbon, hydrogen, nitrogen, oxygen, phosphorus and sulfur are the six basic building blocks of all known forms of life on Earth. Phosphorus is part of the chemical backbone of DNA and RNA, the structures that carry genetic instructions for life, and is considered an essential element for all living cells.

Phosphorus is a central component of the energy-carrying molecule in all cells (adenosine triphosphate) and also the phospholipids that form all cell membranes. Arsenic, which is chemically similar to phosphorus, is poisonous for most life on Earth. Arsenic disrupts metabolic pathways because chemically it behaves similarly to phosphate.

Researchers conducting tests in the harsh, but beautiful (see photo), environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. The microorganism substitutes arsenic for phosphorus in its cell components.

“The definition of life has just expanded,” said Ed Weiler, NASA’s associate administrator for the Science Mission Directorate. “As we pursue our efforts to seek signs of life in the solar system, we have to think more broadly, more diversely and consider life as we do not know it.” This finding of an alternative biochemistry makeup will alter biology textbooks and expand the scope of the search for life beyond Earth.

In science such huge breakthroughs are not just excepted without debate, however, which is wise.

Thriving on Arsenic:

In other words, every experiment Wolfe-Simon performed pointed to the same conclusion: GFAJ-1 can substitute arsenic for phosphorus in its DNA. “I really have no idea what another explanation would be,” Wolfe-Simon says.

But Steven Benner, a distinguished fellow at the Foundation for Applied Molecular Evolution in Gainesville, FL, remains skeptical. If you “replace all the phosphates by arsenates,” in the backbone of DNA, he says, “every bond in that chain is going to hydrolyze [react with water and fall apart] with a half-life on the order of minutes, say 10 minutes.” So “if there is an arsenate equivalent of DNA in that bug, it has to be seriously stabilized” by some as-yet-unknown mechanism.

It is sure a great story if it is true though. Other scientists will examine more data and confirm or disprove the claims.

“We know that some microbes can breathe arsenic, but what we’ve found is a microbe doing something new — building parts of itself out of arsenic,” said Felisa Wolfe-Simon, a NASA Astrobiology Research Fellow in residence at the U.S. Geological Survey in Menlo Park, Calif., and the research team’s lead scientist. “If something here on Earth can do something so unexpected, what else can life do that we haven’t seen yet?”
Continue reading

Backyard Wildlife: Robins Attack Holly Tree

photo of robin in a holly tree

Robins like to attack my holly tree and feed on the berries. Getting photos of them is hard but there are lots of them flying around all excited (I did manage to catch one of them in the photo on the left). This tree was actually here when I moved in but I also do try to nurture and add plants that feed wildlife. I like just planting things that will feed and shelter birds (and others) rather than filling bird feeders myself. There is information on how to use your backyard to promote wildlife.

Related: Backyard Wildlife: CrowsBackyard Wildlife: HawkBackyard Wildlife: Fox

Shrink Serving Sizes

Helping Wally Eat Less

When I was a boy, we were admonished to “clean your plate” because “children are starving.” Many of my friends’ mothers were concerned about the children in China. Since my father had organized food relief to German families after WW II, we cleaned our plates for the children “in Europe.” My friend Larry’s family ate their bit for African children.

Now that I am a full-grown man, this conditioning should be easy to overcome, but it isn’t. Normally I have great willpower and discipline. Alas, that’s not true when it comes to eating my wife’s cooking. Put that great food on my plate and will be gone soon.

I’ve tried “eat less” goals. They don’t work. Delicious food appears on my plate, served by my wife’s loving hands. Somewhere in my subconscious my mother is whispering, “Children are starving in Europe.” My willpower is no match.

What to do? Clearly, admonishing myself to “eat less” does not work. In fact, it’s a recipe (pardon the pun) for frustration. You may have situations like that. You or one of your team members or someone you love has a problem. It seems like willpower or goal setting will solve it. But somehow it never does.

The other part of the systems solution is simplicity itself. Serve Wally using smaller bowls and plates. The plate is full, but there’s less food on it. I can eat everything on my plate to the betterment of those European children and my waistline.

Smaller serving sizes is a good idea. Increasing serving sizes over the last few decades is one of the big problems in the USA’s obesity epidemic. From a problem solving approach another good idea is to look beyond the problem at the larger system (the smaller serving size is a great system solution that is inside the eating problem). In this case for some people a way to deal with an eating problem is to exercise more. By changing the overall system a problem of eating too much can sometimes be changed into not a problem (due to a change outside the system).

Related: Study Shows Weight Loss From Calorie Reduction Not Low Fat or Low CarbStudy Finds Obesity as Teen as Deadly as SmokingEat food. Not too much. Mostly plants.

Boa Constrictor Gives Birth to Clones

Snake gives ‘virgin birth’ to extraordinary babies

A female boa constrictor snake has given birth to two litters of extraordinary offspring. Evidence suggests the mother snake has had multiple virgin births, producing 22 baby snakes that have no father. More than that, the genetic make-up of the baby snakes is unlike any previously recorded among vertebrates, the group which includes almost all animals with a backbone.

“All offspring are female. The offspring share only half the mother’s genetic make-up,” he told the BBC.

Humans for example have X or Y sex chromosomes; females have two X chromosomes and males have a combination of an X and a Y chromosome. In place of X and Y, snakes and many other reptiles have Z and W chromosomes.

In all snakes, ZZ produces males and ZW produces females. Bizarrely, all the snakes in these litters were WW. This was further proof that the snakes inherited all their genetic material from their mother, as only females carry the W chromosome.

“Essentially they are half clones of their mother,” says Dr Booth. That is because the baby snakes have inherited two copies of one half of their mother’s chromosomes, including one W chromosome.

More astonishing though, is that no vertebrate animal in which the females carry the odd sex chromosome (in this case the W chromosome) has ever been recorded naturally producing viable WW offspring via a virgin birth.

“For decades WW has been considered non-viable” says Dr Booth. In such species, all known examples of babies that are the product of parthenogenesis are male, carrying a ZZ chromosomal arrangement.

Related: No sex for all-girl fish speciesVirgin Birth for Another Shark SpeciesBdelloid Rotifers Abandoned Sex 100 Million Years AgoWorld’s Smallest Snake Found in BarbadosAndrogenesis