Tag Archives: NSF

$75.3 Million for 5 New Engineering Research Centers

Claire Gmachl

Photo: Claire Gmachl, associate professor of electrical engineering at Princeton, the MIRTHE center director.

NSF Awards $75.3 Million for Five New Engineering Research Centers including the Mid-Infrared Technologies for Health and the Environment (MIRTHE):

The goal of the research is to produce devices that are so low in cost and easy to use that they transform aspects of the way doctors care for patients, local agencies monitor air quality, governments guard against attack and scientists understand the evolution of greenhouse gases in the atmosphere.

will combine the work of about 40 faculty members, 30 graduate students and 30 undergraduates from the six universities. The center also is collaborating with dozens of industrial partners to turn the technology into commercial products, and is working with several educational outreach partners, which will use MIRTHE’s research as a vehicle for improving science and engineering education.

NSF Graduate Research Fellowship

The NSF Graduate Research Fellowship Program (GRF) is now accepting applications (through early November). The NSF GRF is the largest and most prestigious graduate fellowship program for the sciences in the USA. Approximately 1,000 fellowships, which cover tuition and pay a $30,500 stipend for 3 years, will be awarded again this year. Previous winners include Sergey Brin, Google co-founder (he list winning in his 3 paragraph bio on Google’s site).

The main site for the NSF GRFP includes the solicitation with details on applying and eligibility etc.. I can’t figure out how you find the application from the main site but here is the link to apply for the fellowship.

Advice is available online for applying for the fellowship: How to Win a Graduate Fellowship, Advice for Applicants to the NSF Graduate Research Fellowship and the University of Missouri provides a guide for completing an NSF FRF application.
Continue reading

NSF Engineering Division is Reorganization

Read about the reorganization of NSF’s Engineering Division in their adobe acrobat (pdf) document (the only format in which they provide the document). How does an organization, in this day and age, post a scanned image online instead of posting a text readable document (for a present day document that obviously could just be printed to pdf format and retain text.

In addition to the obvious lameness of such a move when a federal government agency does it (like NSF) they violate the “section 508” regulations put in place to provide adequate access to government documents for those with disabilities.

Hopefully someone will get them to correct their failure soon. NSF does great things, but this failure to provide even the most basic web usability is an embarrassment.

Update – they did correct this, I don’t know when as it is months later when I am updating this but still I am glad they did.

China and USA Basic Science Research

US$425 million to boost Chinese innovation by Fu Jing:

The National Natural Science Foundation of China will provide 3.4 billion yuan (US$425 million) in funding for basic science, it announced last week (25 May).

“The boost has shown the government’s determination for China to become an innovative country by 2020,” said the foundation’s vice-president Zhu Zuoyan. He added that the foundation’s research funding is set to grow by about 20 per cent a year for the next five years.

According to government plans, China’s total investment in science and technology should reach 2.5 per cent of its gross domestic product by 2020 — a share similar to that spent by industrialised nations.
By that time, China aims to be spending about US$112 billion annually on research and development (see China announces 58-point plan to boost science).

U.S. National Science Foundation Celebrates Opening of Beijing Office

The National Science Foundation is a U.S. government agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $5.58 billion.

According to the NSF report, Science and Engineering Indicators 2006, China ranked fourth in the world in the year 2000 in research and development, with $48.9 billion in expenditures. Two years later, the country ranked third, behind the United States and Japan, spending an estimated $72.0 billion on R&D.

“It is important for the U.S. scientific community, especially young researchers, to be aware of and consider collaborating with colleagues in China in this environment,” said Beijing office Director William Chang.

The NSF Beijing Office is NSF’s third foreign office. NSF also maintains research offices in Paris and Tokyo.

Fixing Engineering’s Gender Gap

Fixing Engineering’s Gender Gap by Vivek Wadhwa, Business Week

We can debate whether an engineering gap between the U.S. and India and China exists, but among U.S. engineers there is an indisputable gender gap — fewer than 20% of engineering graduates are women, according to the National Science Foundation. Perhaps a simple solution to maintaining American competitiveness is to encourage more women to enter engineering.

I agree. We need to do a better job of taking advantage of what women engineers can bring to our economy. By taking sensible actions (see some of the related posts below) we can create a system that produces more women engineers and we will benefit from that result.

According to the National Science Foundation, women make up only 5.2% of tenured engineering faculty. Students felt that they had no one to turn to for help and guidance. One student said she felt disadvantaged “when it comes to being an engineer without being like a man.”

Related Posts:

Gene Linked to Fish and Human Pigmentation

Zebra Fish photo

A Fish of a Different Color:

Until now, the genetics underlying human skin pigmentation have remained a mystery. But while studying the zebrafish–a fish common to household aquariums and research laboratories–a team of interdisciplinary scientists found a gene that plays a major role in human coloration.

Besides unraveling some of the mysteries of human variation, the research, which is featured on the cover of the Dec. 16 issue of Science, has implications for understanding a host of human diseases including cancer, diabetes and rickets.

Worldwide Science and Engineering Doctoral Degree Data

graph showing doctoral degrees awarded by region The graph shows doctoral degrees awarded by region in science and engineering (graph from the United States National Science Foundation Science and Engineering Indicators 2004 report). The data used to make the chart is included in this spreadsheet on the NSF site.

It seems to me the claims of the NY Times article discussed in our previous post are wrong. I would trust this NSF data to be fairly accurate. The full report includes a great deal of related data and is worth looking at.

The data from the NSF 2004 report (the data is from 2000 and 2001 [the most recent data they have access to]) show a total of 24,409 science and engineering doctoral degrees granted in all of Asia. How many in the USA? 25,509.

International Mobility of Doctoral Recipients from U.S. Universities by Jean M. Johnson, NSF, 2000, provides some good discussion of related issues. For example, the paper explores country of origin of the students as well as where the students go to work once they receive the degrees.

The percentage of foreign doctoral recipients planning to stay in the United States may
return to the lower 50 percent level that existed until 1992. The 60-70 percent stay rates of the 1993-99 period may have been driven by the expanding U.S. economy and employment opportunities.

In any discussion of the impact of the United States failing behind in science and engineering graduation, and the resulting economic decline, it is critical to understand where the graduates go to work. There are real changes going on:

For example, in the last 5 years, Chinese and Korean students earned more doctoral S&E degrees in their respective countries than in U.S. universities. And in 1999, Taiwanese students, for the first time, earned more doctoral S&E degrees within Taiwanese universities than from U.S. universities.

This is important information. It is also important to see that it was just 1998 when more doctoral degrees were granted in the US than in Taiwan to Taiwanese students.

It seems there are at least two critical issues that people are considering when quoting figures (or related statements about the decline of US science and engineering status). One is getting scientific and engineering workers working in the economy. Another is the actual education of students, which relates directly to the first issue and has many “spin-off” benefits.

One measure used to look at creating future science and engineering workers is the number of those earning degrees (undergraduate and graduate degrees). That is a sensible thing to look at, though it should be noted that such a measure provides a limited view (it is an input measure and not an outcome measure, which would be preferable).

I believe the graduate measure is used as a way to project into the future by many of the future health of the science and engineering success of countries. It seems a sensible measure to pay attention to: we cannot measure today the number of high wages scientists and engineers employed in specific countries 20 years from now (or the jobs those scientists and engineers create for others in the economy or the useful patents written, scientific discoveries made, engineering breakthroughs achieved…).

The number of graduates has some value in trying to predict that outcome years from now but it is only a proxy measure and not at all definitive. The United States has been remarkably effective at getting those who graduate with advanced science and engineering degrees in the United States to say (and even in getting those granted degrees elsewhere to move here during their careers and gaining tremendous benefits to the United States economy). Where students receive degrees (and where they grew up), I believe is correlated to where a person ends up working during their career, but that correlation is not perfect. And that correlation may change in the future – in fact I believe it will do so significantly.

I believe the correlation will decrease – movement will increase and much of this may not even make sense as work flows without much regard for national boundaries (while physical location is one factor if essentially workers in Singapore, India, Mexico and Germany all our working on the same project for a company based in Japan and owned 40% by Canadians… how all this is analyzed gets very confusing).

Looking at where they work immediately after graduation is a sensible thing to do, however we should also look at where they work 10 or 20 years in the later if we are interested in long term impact.

The actual education of the students is also seen as critical to many, and I agree. One reason this is important is you have many good jobs educating the students. But there are many other benefits. The students often do research which if they are in you country is much more likely to benefit your economy than if they are earning there degree elsewhere and supporting research elsewhere.

Also the leading educational hubs create a climate for technological innovation (proximity to the leading experts in the world often provides benefits in tapping that knowledge for purposes that often have economic advantages). If the students are educated elsewhere it is likely those hubs of technological innovation will move also (or at least the lure of the local hub will loose some to another hub that grows in importance). So measuring the number of graduate, post graduate and doctoral degrees granted in your country makes sense (again it is not a perfect measure but a valuable one).

While there is a great deal of worry about the importance of improving science and engineering education to capture economic benefit I think the understanding of the actual situation is lacking. I think we need to have a clearer idea of what the data actual shows. Then I think we can start looking at where we would like to improve. I am to explore related issues with this blog.