Tag Archives: Products

Sustainable Aquaculture

Sustainable Aquaculture

Located on an island in the Guadalquivir river, 10 miles (16km) inland from the Atlantic, Veta la Palma produces 1,200 tons of sea bass, bream, red mullet and shrimp each year. Yet unlike most of the world’s fish farms, it does so not by interfering with nature, but by improving upon it. “Veta la Palma raises fish sustainably and promotes the conservation of birdlife at the same time,” says Daniel Lee, best practices director for the U.S.-based Global Aquaculture Alliance. “I’ve never seen anything quite like it.”

With wild fish stocks declining precipitously around the globe, thanks to overfishing and climate change, aquaculture has emerged as perhaps the only viable way to satisfy the world’s appetite for fish fingers and maki rolls. In the next few years, consumption of farm-raised fish will surpass that caught in the wild for the first time, according to the United Nations Food and Agriculture Organization. But most fish farms — even ones heralded as “sustainable” — create as many problems as they solve, from fecal contamination to the threat that escaped cultivated fish pose to the gene pool of their wild cousins.

Veta la Palama is different. In 1982, the family that owns the Spanish food conglomerate Hisaparroz bought wetlands that had been drained for cattle-farming and reflooded them. “They used the same channels built originally to empty water into the Atlantic,” explains Medialdea. “Just reversed the flow.” Today, that neat little feat of engineering allows the tides to sweep in estuary water, which a pumping station distributes throughout the farm’s 45 ponds. Because it comes directly from the ocean, that water teems with microalgae and tiny translucent shrimp, which provide natural food for the fish that Veta la Palma raises.

By hewing as closely as possible to nature, the farm avoids many of the problems that that plague other aquaculture projects. Low density — roughly 9 lb. (4 kg) of fish to every 35 cu. ft. (1 cu m) of water — helps keep the fish free of parasites (the farm loses only 0.5% of its annual yield to them). And the abundant plant life circling each pond acts as a filter, cleansing the water of nitrogen and phosphates.

Related: Rethinking the Food Production SystemFishless FutureEat food. Not too much. Mostly plants.Running Out of Fish

Agricultural Irrigation with Salt Water

Irrigation system can grow crops with salt water

A British company has created an irrigation system that can grow crops using salt water. The dRHS (Dutyion Root Hydration System) irrigation system consists of a network of sub-surface pipes, which can be filled with almost any water, whether pure, brackish, salted or polluted. The system can even take most industrial waste-water and use it without the need for a purification process.

The pipes are made from a plastic that retains virtually all contaminants while letting clean water through to the plants’ roots.

The dRHS system, which has been in development for ten years, was initially trialled in the UK using tomato plants, and has since been tried out in the US. The next trials will take place in Chile, Libya, Tanzania, Mauritius and Spain. Tonkin says 20,000 metres of pipe are on their way to the Middle East, where it will be tested with water that’s more saline than sea water.

It has also won international recognition for its work, most recently at the international Water Technology Idol event in Switzerland, organised by Global Water Intelligence magazine and the International Desalination Association.

Christopher Gasson from Global Water Intelligence magazine says that the competition was a three-way tie last year but this year, the winner stood out. “The dRHS irrigation system addressed a bigger problem than the other technology that it was competing against,” he said. “Agriculture water is where 70 per cent of water goes. By 2025 two thirds of the world’s population will experience water shortages and so farming will be badly hit.

This is good news. I am still skeptical that this is as good as the article makes it sound. Just as simple as “flushing out the pipes.” But I am hopeful we will find desalination-type solutions. Clean water is a huge problem facing the world now, basically I just figure with enough engineers focused on finding workable solutions we will find several that have a huge impact. If not, we are in real trouble.

Related: Cheap Drinking Water From Seawater (2006)Water From AirNearly Waterless Washing MachineWater and Electricity for All

Buy Your Own Electron Microscope

Buy your own electron microscope from the state of South Carolina, USA.

You will be bidding on a Hitachi Electron Microscope and Accessories Lot (detailed info below). The agency is reporting the basic scope worked when last operated about two years ago. The x-ray detector computer is broken but that is an add-on accessory feature that does not affect operation as an electron microscope. Also, the forepumps and air compressor are missing. These two items will need to be replaced before someone attempts to use it. This is an old electron microscope but is good for basic microscopy. The electron microscope has been disassembled and palletized by the Medical University of South Carolina. This equipment was used by the Medical University of South Carolina and is located in North Charleston, South Carolina. The overall condition of this property is unknown to the Surplus Property Office.

Detailed Lot Info:

  1. Hitachi H7000 Electron Microscope
  2. Kevex Computer (model Delta)
  3. Kevex Monitor
  4. Okidata Printer (model 320)
  5. Hitachi KS55 Camera

Current bid: $460. Auction expires 5 June 2009 at 3 PM USA Eastern Time. Getting the equipment to your location will likely cost much more than that.

This item is for pickup only at the Medical University of South Carolina in North Charleston, South Carolina. The winning bidder is responsible for the loading and removal of this property. MUSC will try to assist if employees are available during the loading.

Related: Scanning Electron Microscope Rose ArtBuild Your Own Tabletop Interactive Multi-touch ComputerSnowflake photographyThe Glove, Engineering Coolness

Evolutionary Robotics

Evolutionary Robotics, chapter of Handbook of Robotics, is interesting and includes a good explanation of the difference between evolution and learning:

Evolution and learning (or phylogenetic and ontogenetic
adaptation) are two forms of biological adaptation that differ in space and time. Evolution is a process of selective reproduction and substitution based on the existence of a population of individuals displaying variability at the genetic level. Learning, instead, is a set of modifications taking place within each single individual during its own life time.

Evolution and learning operate on different time scales. Evolution is a form of adaptation capable of capturing relatively slow environmental changes that

might encompass several generations (e.g., the perceptual characteristics of food sources for a given species). Learning, instead, allows an individual to adapt to environmental modifications that are unpredictable at the generational level. Learning might include a variety of mechanisms that produce adaptive changes in an individual during its lifetime, such as physical development, neural maturation, variation of the connectivity between neurons, and synaptic plasticity. Finally, whereas evolution operates on the genotype, learning affects only the phenotype and phenotypic modifications cannot directly modify the genotype.

Recent research showed that teams of evolved robots can: (a) develop robust and effective behavior, (b) display an ability to differentiate their behavior so
to better cooperate; (c) develop communication capabilities and a shared communication system.

Related: What are Genetic Algorithms?Evolutionary DesignLaboratory of Intelligent SystemsRobot with Biological Brainposts on robotics

Home Engineering: Reading in Bed

Kindle Holder - read in bedPhoto of Kindle, with read-in-bed holder by Randall Munroe

By Randall Munroe, author of the great XKCD comic, The Pursuit of Laziness

Since I was a kid, I’ve been looking for the perfect way to read in bed.

I recently got a Kindle. I was intending to use it mainly as a mobile web browser, but I’ve surprised myself by using it to read an awful lot. And, with apologies to all the bibliophiles out there, I find the ergonomics better than a paperback. When snacking and reading, I can lay it flat on a table without the use of a book weight to hold it opened, and when lying in bed, I don’t have to keep moving it to read.

But it’s not perfect. There’s no way to hold it with a finger on the ‘next page’ buttons that doesn’t require a few muscles to hold it upright

I got out of bed one night, went to the closet, and got a steel coat hanger and some pliers. After a few minutes of twisting, I created this

Related: What Makes Scientists Different 🙂The Lazy Unreasonable ManHome Engineering: Windmill for Electricityposts on home engineering

Continue reading

Honda’s Robolegs Help People Walk

Honda’s Robolegs Help People Walk

The devices combine sensor-driven motors and weight-bearing chassis to guide strides and support body weight. Though derived from technologies pioneered during the ASIMO’s quarter-century of development, their use could be deeply human, boosting manual laborers or assisting people unable to walk without help.

The devices are still in the research stage, and Honda has not yet formalized plans to go commercial. If they do, the market could be large, and not only in Japan. The number of Americans aged 65 and older is expected to double by 2030. More than 17 million report difficulty climbing stairs or walking a quarter-mile.

Related: Honda EngineeringRobotic Prosthetic Arms for PeopleToyota Winglet – Personal TransportationHonda has Never had Layoffs and has been Profitable Every YearAnother Humanoid Robot

Build Your Own Tabletop Interactive Multi-touch Computer

This is a fantastic Do-It_Yourself (DIY) engineering story. Very interesting, definitely go read the whole article: Build Your Own Multitouch Surface Computer

First, some acknowledgments are in order. Virtually all the techniques used to create this table were discovered at the Natural User Interface Group website, which serves as a sort of repository for information in the multitouch hobbyist community.

In order for our setup to work, we needed a camera that senses infrared light, but not visible light. It sounds expensive, but you’d be surprised. In this section, we’ll show you how we created an IR camera with excellent resolution and frame-rate for only $35—the price of one PlayStation 3 Eye camera. “But that’s not an IR camera,” you say? We’ll show you how to fix that.

As it turns out, most cameras are able to sense infrared light. If you want to see first-hand proof that this is the case, try this simple experiment: First, find a cheap digital camera. Most cell phone cameras are perfect for this. Next, point it at the front of your TV’s remote control. Then, while watching the camera’s display, press the buttons on the remote. You’ll see a bluish-white light that is invisible to the naked eye. That’s the infrared light used by the remote to control the TV.

Like the computer, the projector we used for the build was something we scavenged up. The major concern for a projector to use in this kind of system is throw distance—the ratio between projection distance and image size. Short-throw projectors, which are sold by all the major projector brands, work the best for this kind of project, because they can be set up at the bottom of the cabinet and aimed directly at the surface. Unfortunately, they also tend to be more expensive.

Ever thrifty, we went with a projector we could use for free: an older home-theater projector borrowed from a friend. Because of the longer throw distance on this model, we had to mount the projector near the top of the cabinet, facing down, and use a mirror to reflect the image up onto the screen. For this we ordered a front-side mirror (a mirror with the reflective surface on the front of the glass, rather than behind it) to eliminate any potential “ghosting” problems, caused by dual reflections from the front and back of the glass in an ordinary mirror.

Related: Home Engineering: Gaping Hole CostumeVery Cool Wearable Computing Gadget from MIT‘DIY’ kidney machine saves girlHolographic Television on the WayAutomatic Cat FeederVideo Goggles

Cardiac Cath Lab: Innovation on Site

photo of Cath LabPhoto of John Cooke at the Cardiac Catheterisation Labs at St. Thomas’ hospital in London

I manage several blogs on several topics that are related. Often blog posts stay firmly in the domain of one blog of the other. Occasionally the topic blurs the lines between the various blogs (which I like). This post ties directly to my Curious Cat Management Improvement Blog. The management principles I believe in are very similar to engineering principles (no surprise given this blog). And actual observation in situ is important – to understand fully the situation and what would be helpful. Management relying on reports instead of seeing things in action results in many poor decisions. And engineers doing so also results in poor decisions.

Getting to Gemba – a day in the Cardiac Cath Lab by John Cooke

I firmly believe that it is impossible to innovate effectively without a clear understanding of the context and usage of your final innovation. Ideally, I like to “go to gemba“, otherwise known as the place where the problem exists, so I can dig for tacit knowledge and observe unconscious behaviours.

I didn’t disgrace myself and I’ve been invited back for another day or so. What did I learn that I didn’t know before? The key things I learnt were:

  • the guide wire isn’t just a means of steering the catheter into place as I thought. It is a functional tool in it’s own right
  • Feel is really critical to the cardiologist
  • There is a huge benefit in speeding up procedures in terms of patient wellbeing and lab efficiency
  • Current catheter systems lack the level of detection capability and controllability needed for some more complex PCIs (Percutaneous Cardiac Interventions)

The whole experience reminded me that in terms of innovation getting to gemba is critical. When was the last time you saw your products in use up-close and personal?

Related: Jeff Bezos Spends a Week Working in Amazon’s Kentucky Distribution CenterToyota Engineering Development ProcessMarissa Mayer on Innovation at GoogleBe Careful What You MeasureS&P 500 CEOs are Often Engineering GraduatesExperiment Quickly and Often

Personal Robots Being Developed in Japan

Robots Lend a Hand in Japan by Tony McNicol

The most numerous, and certainly the most high-profile, service robots in Japan are for entertainment. Ever since 2000 when Honda amazed the world with its walking humanoid Asimo, other Japanese companies have been fast on their heels. Notable examples include Mitsubishi’s lemon yellow home helper Wakamaru, Toyota’s trumpet-playing humanoid, and Murata Manufacturing’s bicycle-riding robot. Although such impressive PR robots are too expensive to sell, Japan also has popular home entertainment robots. The best known to date is Sony’s robot pooch Aibo, which was produced between 1999 and 2006.

Another potential role for service robots is dealing with Japan’s imminent demographic crisis. A low birthrate and unrivalled longevity mean the number of elderly Japanese will increase dramatically over the coming decades. In the absence of mass immigration (which Japan has been keen to avoid) a severe shortage of caregivers seems inevitable. Some people believe robots are the answer. Takanori Shibata, a senior research scientist at the National Institute of Advanced Industrial Science and Technology, says that robot caregivers can be divided into physical service and mental service robots. The former are designed to help with tasks such as washing or carrying elderly people, although given the limitations of current technology, not to mention safety concerns, they are still quite a long way from commercialization.

Mental service robots on the other hand are already here. One of the best known is Paro, an interactive robot seal designed by Shibata himself. The sophisticated robot can remember its name and change its behavior depending on how it is treated. It has been extensively tested in homes for elderly people and in hospitals. In 2002 the Guinness Book of Records named Paro as “the world’s most therapeutic robot.” The robot reminds patients of the pets or children they once cared for, says Shibata. “Paro is a kind of trigger to provoke something in the mind of the owner,” he suggests. About 1,000 of the robots, which cost about 3,000 dollars, have been produced since 2004. Overseas sales will begin shortly.

The effective use of personal robots finally seems to be fairly close at hand. Undoubtedly the initial attempts will seem limited. See Clayton Christsen’s ideas on disruptive innovation for an understanding of how I think the adoption will play out. Robots will be poor substitutes for other alternatives but as we experiment with how to make them effective we will figure out niches for which they work well. It is hard to predict what will happen but my feeling is we may finally be a the point where real uses of personal robots stat to take hold and then the growth may surprise us.

Related: Toyota Winglet – Personal TransportationA Robot to Clean Your RoomRobot Finds Lost Shoppers and Provides DirectionsThe Robotic DogToyota Partner RobotsRobotic Prosthetic Arms for People

FreeWave’s Data Radios Bring Employee Bonuses

It is easy with the existing economic news to think things are bleak everywhere. But even within the current climate companies find success. Founded in 1993, FreeWave Technologies is a world leader in the innovative design and manufacture of ISM Band radios and wireless data solutions. Their data-transmitting radios span the globe from the Middle East to Mount Everest; from the Amazon Rainforest to Antarctica to New York. They are used by defense contractors, oil and gas companies, city and county municipalities and industrial manufacturers.

photo of Hedy LamarrHedy Lamarr from the trailer for the film Boom Town, 1940

FreeWave’s data radios are based on Frequency Hopping Spread Spectrum Technology. Spread Spectrum was originally created for the U.S. Navy during World War II to prevent the Germans from “jamming” American radio transmissions for radio-guided torpedoes. The technology was invented by Hedy Lamar, a famous movie star of the 1940’s. The original radios contained a roll of paper slotted like a player piano to cause channel switching. Hedy’s close friend, Inventor/Musician George Antheil, designed the first successful synchronization device that brought Hedy’s idea to fruition. In 1941, Hedy and George were granted a U.S. patent for the first “Secret Communications System.” The original system used merely 88 frequencies. Today, the switching is controlled in embedded firmware code that enables a radio to change frequencies hundreds of times per second and use more than 100 channels.

Engineering these radios is something the company takes quite seriously. And hiring the best talent is part of this philosophy. Every single employee considers it his/her job to ensure that customers receive top-notch service seven days a week. This extends all the way through the organization up to senior management. FreeWave is so dedicated to making its customers front and center that it provides 24-hour technical support – even rotating senior management to be on call at nights and on the weekends.

The privately held company is based in Boulder, Colorado, the company offers network design, pre-installation engineering services and manufactures its own radios (manufacturing them in Boulder).

FreeWave’s increase in revenues of 112 percent from 2003 to 2007. The company has paid this bonus every six months since the first one was paid in July 1995. Over the past year, FreeWave has invested in expanding its facility to accommodate more staff; growing its manufacturing space and capabilities; dedicating more resources and technology to its product development; increasing its customer and partner training; and, investing in marketing and sales.
Continue reading