Tag Archives: Products

Basketball Padding

Basketball used to be considered a non-contact sport. Now more and more college and pro players are wearing padding. March Madness, this year with more padding

Plumlee and dozens of other college basketball players wear compression shirts and shorts dotted with foam and plastic shock-absorbing pads under their uniforms. There are also padded sleeves for the elbows and knees. In the past few years players have started to wear this layer of protective gear meant to feel like a second-skin in a sport that has bigger, faster and stronger athletes than ever.

“Some of the things you’ll see like these products, a lot of them tend to be more fads that come and go,” he said. “But anything that comes down over the edge of a bony prominence, or on the knee, makes sense. For the ribs — there’s cartilage that is a natural shock absorber so I don’t know how truly affective that piece might be.”

Purchase: McDavid knee and elbow padsMcDavid Hex Power Shooter Arm SleeveHexpad Thudd with Extended Thigh

Related: Teen Goalie Designs Camouflage PadsEngineering Basketball FlopEngineering A Golf SwingThe Glove, Engineering Coolness

Robot Playing Table Tennis

This video shows the robot has a ways to go to become a decent ping pong opponent. But progress is being made. How soon before I can have fun competing with some robot basketball players?

TOPIO can play table tennis with human beings. It has a head, two hands and six legs. It can hit the ball, calculate scores and express feelings upon losing or winning a game. Four high-speed cameras help TOPIO identify the trajectory of the ball and accurately return shots. TOPIO knows how to hit an incoming ping pong ball when it has traveled only 20 cm from the opponents paddle.

The made-in-Vietnam robot TOPIO captured special attention at the International Robot Exhibition (IREX) held in Tokyo in late 2007.

Related: RoboCup: Robot Football (Soccer)RoboCup German Open 2008Toyota Develops Thought-controlled Wheelchair

Apple’s iPad

Steve Jobs introduces the Apple iPad. A touch screen tablet with wireless internet connectivity and a touch screen keyboard (when desired).

Related: Freeware Wi-Fi app turns iPod into a PhoneLow-Cost Multi-touch Whiteboard Using Wii RemoteBuild Your Own Tabletop Interactive Multi-touch ComputerVery Cool Wearable Computing Gadget from MIT

Siftable Modular Computers

Pretty cool. I must admit I don’t really see how this would function outside of specifically designed situation. I can imagine it could be very cool for education, especially of young kids. Siftables act in concert to form a single interface: users physically manipulate them – piling, grouping, sorting – to interact with digital information and media. David Merrill and Jeevan Kalanithi originally created Siftables at the MIT Media Lab and have formed a company to commercialize the product and have received a grant from NSF to continue the work.

Related: Cool Mechanical Simulation SystemVideo Cat CamArduino: Open Source Programmable HardwareWhat Kids can Learn

Arduino: Open Source Programmable Hardware

Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use hardware and software. It’s intended for artists, designers, hobbyists, and anyone interested in creating interactive objects or environments.

Arduino can sense the environment by receiving input from a variety of sensors and can affect its surroundings by controlling lights, motors, and other actuators. The microcontroller on the board is programmed using the Arduino programming language and the Arduino development environment.

The boards can be built by hand or purchased preassembled; the software can be downloaded for free. The hardware reference designs (CAD files) are available under an open-source license, you are free to adapt them to your needs.

See the getting started guide to try for yourself.

Related: Home Engineering: Physical Gmail NotifierSelf Re-assembling Robots
Lego Mindstorms Robots Solving: Sudoku and Rubik’s CubeBabbage Difference Engine In Lego

Printing Bone, Muscle and More

A Pittsburgh-based research team has created and used an innovative ink-jet system to print “bio-ink” patterns that direct muscle-derived stem cells from adult mice to differentiate into both muscle cells and bone cells.

The custom-built ink-jet printer, developed at Carnegie Mellon’s Robotics Institute, can deposit and immobilize growth factors in virtually any design, pattern or concentration, laying down patterns on native extracellular matrix-coated slides (such as fibrin). These slides are then placed in culture dishes and topped with muscle-derived stem cells (MDSCs). Based on pattern, dose or factor printed by the ink-jet, the MDSCs can be directed to differentiate down various cell-fate differentiation pathways (e.g. bone- or muscle-like).

“This system provides an unprecedented means to engineer replacement tissues derived from muscle stem cells,” said Johnny Huard, professor of orthopedic surgery at the University of Pittsburgh School of Medicine and director of the Stem Cell Research Center at Children’s Hospital of UPMC. Huard has long-standing research findings that show how muscle-derived stem cells (MDSCs) from mice can repair muscle in a model for Duchenne Muscular Dystrophy, improve cardiac function following heart failure, and heal large bone and articular cartilage defects.

Weiss and Campbell, along with graduate student Eric Miller, previously demonstrated the use of ink-jet printing to pattern growth factor “bio-inks” to control cell fates. For their current research, they teamed with Phillippi, Huard and biologists of the Stem Cell Research Center at Children’s Hospital to gain experience in using growth factors to control differentiation in populations of MDSCs from mice.

The team envisions the ink-jet technology as potentially useful for engineering stem cell-based therapies for repairing defects where multiple tissues are involved, such as joints where bone, tendon, cartilage and muscle interface. Patients afflicted with conditions like osteoarthritis might benefit from these therapies, which incorporate the needs of multiple tissues and may improve post-treatment clinical outcomes.

The long-term promise of this new technology could be the tailoring of tissue-engineered regenerative therapies. In preparation for preclinical studies, the Pittsburgh researchers are combining the versatile ink-jet system with advanced real-time live cell image analysis developed at the Robotics Institute and Molecular Biosensor and Imaging Center to further understand how stem cells differentiate into bone, muscle and other cell types.

Related: Engineer Tried to Save His Sister and Invented a Breakthrough Medical DeviceNanoparticles With Scorpion Venom Slow Cancer SpreadVery Cool Wearable Computing Gadget from MITFunding Medical Research

Engineering a Better Football

The football (soccer ball) for the 2010 FIFA World Cup features completely new, ground-breaking technology. Eight 3-D spherically formed panels are moulded together, harmoniously enveloping the inner carcass. The result is an energetic unit combined with perfect roundness.

Aero grooves create the clearly visible profile on the ball’s surface. The Grip’n’Groove profile circles around the entire ball in an optimal aerodynamic way. The integrated grooves provide unmatched flight characteristics, making this the most stable and most accurate Adidas football. The ground breaking performance features have been confirmed in comprehensive comparison tests at Loughborough University in England and countless checks in wind tunnel and the Adidas football laboratory in Scheinfeld, Germany.

The process, shown in the video, for manufacturing the footballs is way more complicate than I thought it would be.

Related: Full Adidas press releaseThe Science of the Football SwerveEngineering Basketball FlopSports Engineering

How the Practice and Instruction of Engineering Must Change

Chief Scientist for the Rocky Mountain Institute and MacArthur Fellow, Amory Lovins, describes how small gains in efficiency at the consumption point can trigger gains that are magnitudes larger at higher levels and discusses how engineering must be practiced and taught fundamentally different.

Related: MIT Hosts Student Vehicle Design Summit59 MPG Toyota iQ Diesel Available in EuropeWebcast: Engineering Education in the 21st Century

Bionic Vision

Micro Machines and Opto-Electronics on a Contact Lense

Fiction now meets reality with prototype contact lenses developed by Babak Parviz at the University of Washington, in Seattle. Dr. Parviz’s prototype lenses can be used as biosensors to display body chemistry or as a heads up display (HUD). Powered by radio waves and 330 microwatts of power from a loop antenna that picks up power beamed from nearby radio sources, future versions will also be able to harvest power from a cell phone.

In his early 2008 lab tests, rabbits safely wore contact lenses with metal connectors for electronic circuits. The prototype lenses contained an electric circuit as well as red light-emitting diodes for a display. The lenses were tested on rabbits for up to 20 minutes and the animals showed no adverse effects.

Contact lenses as replacements for smart phone displays — even to monitor blood glucose levels — might best be done while not operating heavy equipment. “The true promise of this research is not just the actual system we end up making, whether it’s a display, a biosensor, or both,” comments Dr. Parviz. “We already see a future in which the humble contact lens becomes a real platform, like the iPhone is today, with lots of developers contributing their ideas and inventions. As far as we’re concerned, the possibilities extend as far as the eye can see, and beyond.”

Related: A Journey Into the Human Eye3-D Images of EyesScientists Discover How Our Eyes Focus When We Read

Zubbles – Get Your Colored Bubbles

photo of blue bubblephoto of blue colored bubble.

I first posted on this in 2005: Colored Bubbles. Now you can order your own via Zubbles. Colored Bubbles Have Landed (and Popped and Vanished)

Having solved the colored bubble dilemma, we spent most of 2006 trying to refine our dyes and the manufacturing process. We had invented several completely new dyes and a few derivatives of existing dyes. But the manufacturing process was long, tedious and expensive. It took three days just to make a few grams of each dye. It quickly became apparent that we needed to radically streamline the production process in order to have a viable product.

The complexities of the chemistry resembled a pharmaceutical more than a toy. So I enlisted the help of Gary Willingham, and the Belgium development team, at Fisher Scientific. Fisher is a pharmaceutical chemical manufacturer with the equipment and expertise needed to manufacture tons of our dyes.

Due to the complexities of the chemistry, Jamm decided to stay close to the production process and manufacture Zubbles in the US. The first bottles rolled off the line this week. Jamm presented me with the very first case of Zubbles. And it was a very strange feeling to finally hold the product in my hand—15 years after I mixed my first batch of dishwashing detergent and food coloring.

Being an entrepreneur is a challenge any time. When your product requires complex science and engineering that adds additional challenges. It is great to see this product is now available.

Related: Making Magnificent Mirrors with Math1979 “iPod-like” Music PlayerThe Glove – Engineering Coolnessscience and engineering gadgets and giftsBuild Your Own Tabletop Interactive Multi-touch ComputerAwesome Cat Cam