Cross section of a cell by the Royal Swedish Academy of Sciences. A ribosome is about 25 nanometters (a millionth of a millimeter) in size. A cell contains tens of thousands of ribosomes.The Nobel Prize in Chemistry for 2009 awards studies of one of life’s core processes: the ribosome’s translation of DNA information into life. Ribosomes produce proteins, which in turn control the chemistry in all living organisms. As ribosomes are crucial to life, they are also a major target for new antibiotics.
This year’s Nobel Prize in Chemistry awards Venkatraman Ramakrishnan, Thomas A. Steitz and Ada E. Yonath for having showed what the ribosome looks like and how it functions at the atomic level. All three have used a method called X-ray crystallography to map the position for each and every one of the hundreds of thousands of atoms that make up the ribosome.
Inside every cell in all organisms, there are DNA molecules. They contain the blueprints for how a human being, a plant or a bacterium, looks and functions. But the DNA molecule is passive. If there was nothing else, there would be no life.
The blueprints become transformed into living matter through the work of ribosomes. Based upon the information in DNA, ribosomes make proteins: oxygen-transporting haemoglobin, antibodies of the immune system, hormones such as insulin, the collagen of the skin, or enzymes that break down sugar. There are tens of thousands of proteins in the body and they all have different forms and functions. They build and control life at the chemical level.
Related: The Nobel Prize in Chemistry 2008 – 2007 Nobel Prize in Chemistry – 2006 Nobel Prize in Chemistry – posts on chemistry – basic research posts
Details from the Nobel Prize site (which continues to do a great job providing scientific information to the public openly).
Continue reading

The delicate inner structure of a pentacene molecule imaged with an atomic force microscope. For the first time, scientists achieved a resolution that revealed the chemical structure of a molecule. The hexagonal shapes of the five carbon rings in the pentacene molecule are clearly resolved. Even the positions of the hydrogen atoms around the carbon rings can be deduced from the image. (Pixels correspond to actual data points).