Tag Archives: Robots

Arduino: Open Source Programmable Hardware

Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use hardware and software. It’s intended for artists, designers, hobbyists, and anyone interested in creating interactive objects or environments.

Arduino can sense the environment by receiving input from a variety of sensors and can affect its surroundings by controlling lights, motors, and other actuators. The microcontroller on the board is programmed using the Arduino programming language and the Arduino development environment.

The boards can be built by hand or purchased preassembled; the software can be downloaded for free. The hardware reference designs (CAD files) are available under an open-source license, you are free to adapt them to your needs.

See the getting started guide to try for yourself.

Related: Home Engineering: Physical Gmail NotifierSelf Re-assembling Robots
Lego Mindstorms Robots Solving: Sudoku and Rubik’s CubeBabbage Difference Engine In Lego

Soft Morphing Robot Future

This webcast shows iRobot’s (Romba maker) prototypes for soft flexible robots. The robot uses “jamming” to morph the body which allows animal like locomotion and the ability to reshape the body to squeeze through small and difficult to navigate locations.

Related: Caterpillar-Inspired RobotFriday Cat Fun #8: Cat Ridding a RoombaiRobot Gutter Cleaning RobotMoth Controlled RobotSelf Re-assembling Robots

Lego Mindstorms Robots Solving: Sudoku and Rubik’s Cube

LEGO Mindstorms Rubik’s Cube Solver

Tilted Twister solves Rubik’s cube fully automatically.
Just place the scrambled cube on Tilted Twister’s turntable. An ultrasonic sensor detects its presence and starts to read the colors of the cube faces using a light sensor. The robot turns and tilts the cube in order to read all the faces. It then calculates a solution and executes the moves by turning, tilting and twisting the cube.

The challenge was to build the robot using only the Lego Mindstorms NXT Retail-kit. And to make it completely independent, without need of being connected to a PC.
The Lego Mindstorms NXT Retail-kit contains three servo motors and four sensors (touch, light, ultrasonic and sound). How should I build the robot using only these items?
After a lot of experimenting I came up with a solution – If I tilted the whole robot, it would be possible for it to tilt the cube using only one motor, leaving the other two motors for turning the cube and for positioning the light sensor. Thus Tilted Twister.

Scanning the cube: 1 minute
Calculating a solution: 20 – 40 seconds
Executing the moves: 1 – 5 minutes. Average 4.5 minutes (60 faceturns)
Average total time: 6 minutes

Very cool. Related book: Building Robots With Lego Mindstorms

Related: Build Your Own Tabletop Interactive Multi-touch ComputerBabbage Difference Engine In LegoIf Tech Companies Made SudokuLego Autopilot Project UpdateRubick’s Cube Solving Lego Mindstorms RobotOpen Source for LEGO Mindstorms

Young Engineers Take LEGO ‘Bots For a Swim

Young Engineers Take LEGO ‘Bots For a Swim

The Stevens Institute of Technology hosts this competition annually on its campus here, gathering students earlier this month from more than 40 middle and high schools to pit their designs against one another in kiddie pools on the banks of the Hudson River. In dozens of such competitions around the world, young people build, program and drive vehicles made of Legos and other more rugged materials. These events are a bid to interest a new generation in careers in engineering and robotics, and they are becoming more sophisticated.

Upping the ante this year, Build IT introduced Lego’s NXT programmable control box. At least one student on each team learned to program the NXT. The programmer determined which of the vehicle’s propellers would spin and in which direction when the driver moved the levers.

Holding up the device, Abigail Symons from Lincoln Park Middle School demonstrated her work. “Those are the controls and those are the touch sensors and this is a rotation sensor,” she said. She had never used such technology before she joined the team.

“I thought I was going to be bad at it because I wasn’t sure if the right motor would go with the right propeller, but in the end I got it so, it was good,” she said.

The Build IT program is funded by a $1.2 million grant from the National Science Foundation with further funding by the Motorola Foundation. It is one facet in the NSF’s scheme to entice students into future careers in engineering and other sciences.

Related: Lunacy – FIRST Robotics Challenge 2009Building minds by building robotsLa Vida RobotRobot Fish

Moth Controlled Robot

photo of moth controlled robotPhoto of moth controlled robot from Ryohei Kanzaki’s bio-machine page. The moth is on top of the ping pong ball in the middle of the robot.

Japanese scientists to build robot insects

Ryohei Kanzaki, a professor at Tokyo University’s Research Centre for Advanced Science and Technology, has studied insect brains for three decades and become a pioneer in the field of insect-machine hybrids.

His original and ultimate goal is to understand human brains and restore connections damaged by diseases and accidents – but to get there he has taken a very close look at insect “micro-brains”.

Insects’ tiny brains can control complex aerobatics such as catching another bug while flying, proof that they are “an excellent bundle of software” finely honed by hundreds of millions of years of evolution, Prof Kanzaki said.

In an example of ‘rewriting’ insect brain circuits, Prof Kanzaki’s team has succeeded in genetically modifying a male silkmoth so that it reacts to light instead of smell, or to the odour of a different kind of moth.

Such modifications could pave the way to creating a robo-bug which could in future sense illegal drugs several kilometres away, as well as landmines, people buried under rubble, or toxic gas, the professor said.

It is nice to be reminded of the cool research being done by professors all over the globe.

Related: Roachbot: Cockroach Controlled RobotRat Brain Cells, in a Dish, Flying a PlaneToyota Develops Thought-controlled WheelchairFlying “Insect” RobotsUnderwater Robots Collaborate

Botball 2009 Finals

Webcast of the double elimination rounds of the Botball 2009 competition of the winning Alcott Middle School Botball team. Norman teens win robotics contest:

The challenge of building the robot and seeing it do what it’s programmed to do is very exciting, said Goree, 14. “I like figuring out what’s wrong with the robots, fixing them and then seeing them work after you fix them,” he said.

The team was shocked, excited and proud of their first-place finish, they said. “Almost all the teams we played against were high school teams, so that was pretty exciting for us, beating high schoolers,” Goree said.

Related: Robo-One Grand Championship in TokyoFIRST Robotics in MinnesotaRoboCup: Robot Football (Soccer)

Toyota Develops Thought-controlled Wheelchair

Toyota has developed a thought-controlled wheelchair (along with Japanese government research institute, RIKEN, and Genesis Research Institute). Honda has also developed a system that allows a person to control a robot through thoughts. Both companies continue to invest in innovation and science and engineering. The story of a bad economy and bad sales for a year or two is what you read in most newspapers. The story of why Toyota and Honda will be dominant companies 20 years from now is their superior management and focus on long term success instead of short term quarterly results.

The BSI-Toyota Collaboration Center, has succeeded in developing a system which utilizes one of the fastest technologies in the world, controlling a wheelchair using brain waves in as little as 125 milliseconds (one millisecond, or ms, is equal to 1/1000 seconds.

Plans are underway to utilize this technology in a wide range of applications centered on medicine and nursing care management. R&D under consideration includes increasing the number of commands given and developing more efficient dry electrodes. So far the research has centered on brain waves related to imaginary hand and foot control. However, through further measurement and analysis it is anticipated that this system may be applied to other types of brain waves generated by various mental states and emotions.

Related: Honda’s Robolegs Help People WalkReal-time control of wheelchairs with brain wavesToyota Winglet, Personal TransportationToyota RobotsMore on Non-Auto ToyotaHonda has Never had Layoffs and has been Profitable Every Year

Surgeon-engineer advances high-tech healing

Surgeon-engineer advances high-tech healing

Catherine Mohr, 40, is herself a rare creature. Part surgeon, part engineer, she designs instruments and procedures for laparoscopic, or minimally invasive, surgery as well as the surgery curriculum at Stanford University School of Medicine.

The spider – better known as the DaVinci surgical robot – was created by the Sunnyvale company Intuitive Surgical Inc., where her husband, Paul Mohr, is an engineer and she is director of medical research. She designed the special surgical instruments that attach securely to the DaVinci’s strong, wristed arms, and has helped to design the next generation of the robot.

She also designed a procedure for using the robot for gastric-bypass surgery. Her paper on the procedure was published in 2006 in Obesity Surgery, a medical journal. “Someone who needs a gastric bypass has a thick abdominal wall,” Mohr explains. “It can take months for incisions to heal, so you want to do the operation through the smallest incision you can.”

The operation is also ergonomically challenging for the surgeon. “What you’re doing inside is very challenging, and you can’t stand terribly close because these patients are so large,” she says. “It seemed to me that this was something we should do with the robot.”

The surgeon uses controllers to drive the laparoscopic instruments held by the robot, and a screen to view the action. “You don’t cut what you can’t see,” she says.

Related: Moving Closer to Robots Swimming Through BloodsteamCardiac Cath Lab: Innovation on SiteScience and Engineering Blogs

Evolutionary Robotics

Evolutionary Robotics, chapter of Handbook of Robotics, is interesting and includes a good explanation of the difference between evolution and learning:

Evolution and learning (or phylogenetic and ontogenetic
adaptation) are two forms of biological adaptation that differ in space and time. Evolution is a process of selective reproduction and substitution based on the existence of a population of individuals displaying variability at the genetic level. Learning, instead, is a set of modifications taking place within each single individual during its own life time.

Evolution and learning operate on different time scales. Evolution is a form of adaptation capable of capturing relatively slow environmental changes that

might encompass several generations (e.g., the perceptual characteristics of food sources for a given species). Learning, instead, allows an individual to adapt to environmental modifications that are unpredictable at the generational level. Learning might include a variety of mechanisms that produce adaptive changes in an individual during its lifetime, such as physical development, neural maturation, variation of the connectivity between neurons, and synaptic plasticity. Finally, whereas evolution operates on the genotype, learning affects only the phenotype and phenotypic modifications cannot directly modify the genotype.

Recent research showed that teams of evolved robots can: (a) develop robust and effective behavior, (b) display an ability to differentiate their behavior so
to better cooperate; (c) develop communication capabilities and a shared communication system.

Related: What are Genetic Algorithms?Evolutionary DesignLaboratory of Intelligent SystemsRobot with Biological Brainposts on robotics