Tag Archives: Robots

New Yorkers Help Robot Find Its Way in the Big City

Tweenbots by Kacie Kinzer

I wondered: could a human-like object traverse sidewalks and streets along with us, and in so doing, create a narrative about our relationship to space and our willingness to interact with what we find in it? More importantly, how could our actions be seen within a larger context of human connection that emerges from the complexity of the city itself? To answer these questions, I built robots.

Tweenbots are human-dependent robots that navigate the city with the help of pedestrians they encounter. Rolling at a constant speed, in a straight line, Tweenbots have a destination displayed on a flag, and rely on people they meet to read this flag and to aim them in the right direction to reach their goal.

The results were unexpected. Over the course of the following months, throughout numerous missions, the Tweenbots were successful in rolling from their start point to their far-away destination assisted only by strangers. Every time the robot got caught under a park bench, ground futilely against a curb, or became trapped in a pothole, some passerby would always rescue it and send it toward its goal. Never once was a Tweenbot lost or damaged. Often, people would ignore the instructions to aim the Tweenbot in the “right” direction, if that direction meant sending the robot into a perilous situation. One man turned the robot back in the direction from which it had just come, saying out loud to the Tweenbot, “You can’t go that way, it’s toward the road.”

Very cool, fun and interesting. Cute integration of technology, psychology and an inquisitive scientific mind.

Related: The Science of KissingOpen Source for LEGO MindstormsRobot Finds Lost Shoppers and Provides DirectionsMaking Robots from Trash

Honda’s Robolegs Help People Walk

Honda’s Robolegs Help People Walk

The devices combine sensor-driven motors and weight-bearing chassis to guide strides and support body weight. Though derived from technologies pioneered during the ASIMO’s quarter-century of development, their use could be deeply human, boosting manual laborers or assisting people unable to walk without help.

The devices are still in the research stage, and Honda has not yet formalized plans to go commercial. If they do, the market could be large, and not only in Japan. The number of Americans aged 65 and older is expected to double by 2030. More than 17 million report difficulty climbing stairs or walking a quarter-mile.

Related: Honda EngineeringRobotic Prosthetic Arms for PeopleToyota Winglet – Personal TransportationHonda has Never had Layoffs and has been Profitable Every YearAnother Humanoid Robot

Robot Independently Applies the Scientific Method

Robot achieves scientific first by Clive Cookson

A laboratory robot called Adam has been hailed as the first machine in history to have discovered new scientific knowledge independently of its human creators. Adam formed a hypothesis on the genetics of bakers’ yeast and carried out experiments to test its predictions, without intervention from its makers at Aberystwyth University.

The result was a series of “simple but useful” discoveries, confirmed by human scientists, about the gene coding for yeast enzymes. The research is published in the journal Science.

Adam is the result of a five-year collaboration between computer scientists and biologists at Aberystwyth and Cambridge universities.

The researchers endowed Adam with a huge database of yeast biology, automated hardware to carry out experiments, supplies of yeast cells and lab chemicals, and powerful artificial intelligence software. Although they did not intervene directly in Adam’s experiments, they did stand by to fix technical glitches, add chemicals and remove waste.

“Adam is a prototype,” says Prof King. “Eve is better designed and more elegant.” In the new experiments, Adam and Eve will work together to devise and carry out tests on thousands of chemical compounds to discover antimalarial drugs.

Very cool.

Related: Autonomous Helicopters Teach Themselves to Fly10 Most Beautiful Physics ExperimentsFold.it – the Protein Folding Gameposts on robots

Robot with Biological Brain

The Living Robot by Joe Kloc

Life for Warwick’s robot began when his team at the University of Reading spread rat neurons onto an array of electrodes. After about 20 minutes, the neurons began to form connections with one another. “It’s an innate response of the neurons,” says Warwick, “they try to link up and start communicating.”

For the next week the team fed the developing brain a liquid containing nutrients and minerals. And once the neurons established a network sufficiently capable of responding to electrical inputs from the electrode array, they connected the newly formed brain to a simple robot body consisting of two wheels and a sonar sensor.

At first, the young robot spent a lot of time crashing into things. But after a few weeks of practice, its performance began to improve as the connections between the active neurons in its brain strengthened. “This is a specific type of learning, called Hebbian learning,” says Warwick, “where, by doing something habitually, you get better at doing it.”

“It’s fun just looking at it as a robot life form, but I think it may also contribute to a better understanding of how our brain works,” he says. Studying the ways in which his robot learns and stores memories in its brain may provide new insights into neurological disorders like Alzheimer’s disease.

Related: Roachbot: Cockroach Controlled RobotRat Brain Cells, in a Dish, Flying a PlaneHow The Brain Rewires ItselfBrain Development

Personal Robots Being Developed in Japan

Robots Lend a Hand in Japan by Tony McNicol

The most numerous, and certainly the most high-profile, service robots in Japan are for entertainment. Ever since 2000 when Honda amazed the world with its walking humanoid Asimo, other Japanese companies have been fast on their heels. Notable examples include Mitsubishi’s lemon yellow home helper Wakamaru, Toyota’s trumpet-playing humanoid, and Murata Manufacturing’s bicycle-riding robot. Although such impressive PR robots are too expensive to sell, Japan also has popular home entertainment robots. The best known to date is Sony’s robot pooch Aibo, which was produced between 1999 and 2006.

Another potential role for service robots is dealing with Japan’s imminent demographic crisis. A low birthrate and unrivalled longevity mean the number of elderly Japanese will increase dramatically over the coming decades. In the absence of mass immigration (which Japan has been keen to avoid) a severe shortage of caregivers seems inevitable. Some people believe robots are the answer. Takanori Shibata, a senior research scientist at the National Institute of Advanced Industrial Science and Technology, says that robot caregivers can be divided into physical service and mental service robots. The former are designed to help with tasks such as washing or carrying elderly people, although given the limitations of current technology, not to mention safety concerns, they are still quite a long way from commercialization.

Mental service robots on the other hand are already here. One of the best known is Paro, an interactive robot seal designed by Shibata himself. The sophisticated robot can remember its name and change its behavior depending on how it is treated. It has been extensively tested in homes for elderly people and in hospitals. In 2002 the Guinness Book of Records named Paro as “the world’s most therapeutic robot.” The robot reminds patients of the pets or children they once cared for, says Shibata. “Paro is a kind of trigger to provoke something in the mind of the owner,” he suggests. About 1,000 of the robots, which cost about 3,000 dollars, have been produced since 2004. Overseas sales will begin shortly.

The effective use of personal robots finally seems to be fairly close at hand. Undoubtedly the initial attempts will seem limited. See Clayton Christsen’s ideas on disruptive innovation for an understanding of how I think the adoption will play out. Robots will be poor substitutes for other alternatives but as we experiment with how to make them effective we will figure out niches for which they work well. It is hard to predict what will happen but my feeling is we may finally be a the point where real uses of personal robots stat to take hold and then the growth may surprise us.

Related: Toyota Winglet – Personal TransportationA Robot to Clean Your RoomRobot Finds Lost Shoppers and Provides DirectionsThe Robotic DogToyota Partner RobotsRobotic Prosthetic Arms for People

Toyota Software Development for Partner Robots

Toyota Discusses Software Development for Partner Robots

Yamada: What was unique about the software development for the partner robots exhibited at Aichi Expo was the fact that Toyota entirely disposed of its assets from the past.

Toyota owned some software assets because it had been developing partner robots for some time before developing the robots for the exposition. But those assets were all one-offs. No one but the developers themselves could comprehend their architectures.

As Toyota was developing more than one partner robot for the exposition, the number of developers involved increased. Considering that we can never complete any development if we use the past assets that rely on an individual developer’s skill, we made everything, including the platform, from scratch again.

Toyota developed the platform focusing on promoting design review by visualizing the control logic. Therefore, the company thoroughly separated control sequences and algorithms. To be more specific, it used state transition diagrams.

Each algorithm is stored in a different block in a state transition diagram. With such diagrams, developers can easily comprehend the flow of the control and review the design even if they do not understand each algorithm. The company employed this method because each algorithm such as a bipedal walking algorithm is too complicated for anyone but their developers to understand it.

Related: Toyota Partner Robots (2006)Toyota Cultivating Engineering TalentToyota iUnit

Self Re-assembling Robots

Cool modular robots can self re-assemble if kicked apart. Shape-shifting robots take form:

DARPA programme manager Mitch Zakin is pursuing what he calls “programmable matter”. These are so-called “mesoscale” mini-machines, a millimetre to a centimetre in size, that can arrange themselves to form whatever shape is desired. Initially, Zakin expects the outcome to be devices the size of small Lego pieces, but as the technology improves the modules and the machines assembled from them should scale down further. Ultimately you could tell a sack of “smart sand” what to do, and the grains would assemble themselves into a hammer, a wrench or even a morphing robotic aircraft. “It’s making machines more like materials, and materials more like machines,” says Daniela Rus, a robotics researcher at the Massachusetts Institute of Technology.

Related: Roachbot: Cockroach Controlled RobotRobot Fish webcastRobot Hall of Fame

Building Engineers by Letting Kids Build Robots

Building engineers

This year Google has enthusiastically supported my initiative to bring a local group of girls closer to technology through the FIRST Robotics Competition.

“People claim that only with the perspective of years can you know how much influence a particular event has had on you,” Tal Tzangen says and proceeds to explain how she is convinced her participation in the FIRST Robotics Competition last year has significantly changed the course of her life. Tal, a 17 year old girl from a rural part of Israel, was taking technology courses at her school, not because she was particularly interested in technology but because the other options seemed even less appealing to her. Although Israel is also known as “Silicon Wadi,” Tal thought technology was “just for geeks.” Last year she agreed to be a member of a newly forming FIRST team, not knowing what she was letting herself in for.

The competition involves 1,686 teams from more than 42,000 high schools spanning the U.S., Brazil, Canada, Chile, Germany, Israel, Mexico, the Netherlands, the Philippines, Turkey, and the U.K. Each team has six weeks to build a robot from a common kit of parts provided by FIRST. Then, they compete with other robots in a new game devised each year.

She has enlisted some pre-high school girls with the hope of serving as a role model to them. Likewise, she has encouraged the forming of a FIRST LEGO team (9-14 year olds) to ensure the “next generation” for the Robotics Competition.

Related: Lunacy – FIRST Robotics Challenge 2009National Underwater Robotics ChallengeBuilding minds by building robotsLEGO Sumo Robotic Championship

Lunacy – FIRST Robotics Challenge 2009

The For Inspiration and Recognition of Science and Technology (FIRST) Robotic Challenge is a great way to get high school students involved in engineering. Lunacy is the 2009 competition which mimics the low friction environment on the moon (using a slick surface and slick wheels on the robots). For more information see the competition manual and related documents.

Related: FIRST Robotics in MinnesotaKids Fuse Legos and Robotics at CompetitionLa Vida RobotNorthwest FIRST Robotics Competition2006 FIRST Robotics Competition Regional Events

Moving Closer to Robots Swimming Through Bloodsteam

Pretty cool. Tiny motor allows robots to swim through human body

James Friend, of Monash University, said that such devices could enter previously unreachable brain areas, unblocking blood clots, cleaning vessels or sending back images to surgeons. “The first complete device we want to build would have a camera,” Professor Friend said.

Professor Friend said they had shown the motor, which is a quarter of a millimetre wide, had enough power to navigate this type of nanorobot through the bloodstream of a human artery. Tests of their prototype device in a liquid as viscous as blood were also promising. “It swam.”

The team plans to conduct animal tests of a nanorobot driven by their motor later this year or early next year. But Professor Friend cautioned that many technical hurdles needed to be overcome.

Their miniature motor was connected to an electricity supply and a way would need to be found to power it remotely. The construction of the flagella also needed refinement.

Related: Micro-robots to ‘swim’ Through Veins (post in 2006 on this work)Bacteria Power Tiny MotorBiological Molecular MotorsRobo Insect Flight