Tag Archives: Robots

The Chip That Designs Itself

The chip that designs itself by Clive Davidson , 1998

Adrian Thompson, who works at the university’s Centre for Computational Neuroscience and Robotics, came up with the idea of self-designing circuits while thinking about building neural network chips. A graduate in microelectronics, he joined the centre four years ago to pursue a PhD in neural networks and robotics.

To get the experiment started, he created an initial population of 50 random circuit designs coded as binary strings. The genetic algorithm, running on a standard PC, downloaded each design to the Field Programmable Gate Arrays (FPGA) and tested it with the two tones generated by the PC’s sound card. At first there was almost no evidence of any ability to discriminate between the two tones, so the genetic algorithm simply selected circuits which did not appear to behave entirely randomly. The fittest circuit in the first generation was one that output a steady five-volt signal no matter which tone it heard.

By generation 220 there was some sign of improvement. The fittest circuit could produce an output that mimicked the input – wave forms that corresponded to the 1KHz or 10KHz tones – but not a steady zero or five-volt output.

By generation 650, some evolved circuits gave a steady output to one tone but not the other. It took almost another 1,000 generations to find circuits that could give approximately the right output and another 1,000 to get accurate results. However, there were still some glitches in the results and it took until generation 4,100 for these to disappear. The genetic algorithm was allowed to run for a further 1,000 generations but there were no further changes.

See Adrian Thompson’s home page (Department of Informatics, University of Sussex) for more on evolutionary electronics. Such as Scrubbing away transients and Jiggling around the permanent: Long survival of FPGA systems through evolutionary self-repair:

Mission operation is never interrupted. The repair circuitry is sufficiently small that a pair could mutually repair each other. A minimal evolutionary algorithm is used during permanent fault self-repair. Reliability analysis of the studied case shows the system has a 0.99 probability of surviving 17 times the mean time to local permanent fault arrival. Such a system would be 0.99 probable to survive 100 years with one fault every 6 years.

Very cool.

Related: Evolutionary DesignInvention MachineEvo-Devo

Friday Cat Fun #8: Cat Ridding a Roomba

This cat seems to enjoy the ride as a Roomba vacuums. My cat would always go crazy when the vacuum cleaner went on.

Buy a Roomba for your cat to ride. Or get your cat a camera and put their photography online. You can also shop for people with our selection of some science and engineering gadgets and gifts.

Related: Gutter Cleaning RobotTreadmill CatsCat Ridding the BusThe Wonderful Life of a Cat

Engineers Rule at Honda

Engineers Rule, 2006

Of all the bizarre subsidiaries that big companies can find themselves with, Harmony Agricultural Products, founded and owned by Honda Motor, is one of the strangest. This small company near Marysville, Ohio produces soybeans for tofu. Soybeans? Honda couldn’t brook the sight of the shipping containers that brought parts from Japan to its nearby auto factories returning empty. So Harmony now ships 33,000 pounds of soybeans to Japan.

Longtime auto analyst John Casesa, who now runs a consulting company, says, “There’s not a company on earth that better understands the culture of engineering.” The strategy has worked thus far. Honda has never had an unprofitable year. It has never had to lay off employees.

I checked and Honda was also profitable in 2007 and 2008 fiscal year (ending in September).

Related: Honda EngineeringAsimo Robot: Running and Climbing StairsThe Google Way: Give Engineers RoomGoogle’s Ten Golden Rules

Wednesday Fun: Dancing Robot Hexapod

Dancing Robot Hexapod

Created by students from the Upper Austria University of Applied Science for the Hexapod Robot competition that happens yearly, this dancing robot strutted its six legs, costumed with hat, sunglasses and Ali-G looking goat tee and used its metal joints to prove it has got rhythm. It is no wonder it is the winner, for it is highly entertaining!

Related: RoboCup German Open 2008LEGO Sumo Robotic ChampionshipMusical RobotsRobo-One Grand Championship in Tokyo

The Robotic Dog

From Boston Dynamics. [update 2017 – Google sold Boston Dynamics to Softbank (Japan)]

via: Man’s New Best Friend: The Robotic Dog [I removed the broken link]

Autonomous Helicopters Teach Themselves to Fly

photo of Stanford Autonomous Learning Helicopters

Stanford’s “autonomous” helicopters teach themselves to fly

Stanford computer scientists have developed an artificial intelligence system that enables robotic helicopters to teach themselves to fly difficult stunts by watching other helicopters perform the same maneuvers.

The dazzling airshow is an important demonstration of “apprenticeship learning,” in which robots learn by observing an expert, rather than by having software engineers peck away at their keyboards in an attempt to write instructions from scratch.

It might seem that an autonomous helicopter could fly stunts by simply replaying the exact finger movements of an expert pilot using the joy sticks on the helicopter’s remote controller. That approach, however, is doomed to failure because of uncontrollable variables such as gusting winds.

Very cool. Related: MIT’s Autonomous Cooperating Flying VehiclesThe sub-$1,000 UAV Project6 Inch Bat PlaneKayak Robots

Toyota Winglet – Personal Transportation

Winglet Personal Mobility Device from Toyota

Toyota has a long term vision. The population of Japan is aging rapidly. Toyota has invested in personal transportation and personal robotic assistance for quite some time. I must admit this new Winglet doesn’t seem like an incredible breakthrough to me (their earlier iUnit seems much better to me – though I am sure much more expensive too). The interest to me is in their continued focus on this market which I think is a smart move. The aging population worldwide (and others) will benefit greatly from improved personal mechanical assistance.

The Winglet is one of Toyota’s people-assisting Toyota Partner Robots. Designed to contribute to society by helping people enjoy a safe and fully mobile life, the Winglet is a compact next-generation everyday transport tool that offers advanced ease of use and expands the user’s range of mobility.

The Winglet consists of a body that houses an electric motor, two wheels and internal sensors that constantly monitor the user’s position and make adjustments in power to ensure stability. Meanwhile, a unique parallel link mechanism allows the rider to go forward, backward and turn simply by shifting body weight, making the vehicle safe and useful even in tight spaces or crowded environments.

Toyota plans various technical and consumer trials to gain feedback during the Winglet’s lead-up to practical use. Practical tests of its utility as a mobility tool are planned to begin in Autumn 2008 at Central Japan International Airport (Centrair) near Nagoya, and Laguna Gamagori, a seaside marine resort complex in Aichi Prefecture. Testing of its usefulness in crowded and other conditions, and how non-users react to the device, is to be carried out in 2009 at the Tressa Yokohama shopping complex in Yokohama City.

Toyota is pursuing sustainability in research and development, manufacturing and social contribution as part of its concept to realize “sustainability in three areas” and to help contribute to the health and comfort of future society. Toyota Partner Robot development is being carried out with this in mind and applies Toyota’s approach to monozukuri (“making things”), which includes its mobility, production and other technologies.

Toyota aims to realize the practical use of Toyota Partner Robots in the early 2010s.

On a personal note, I bought some more Toyota stock last week. The stock has declined a bit recently. Toyota is one of the companies in my 12 stocks for 10 years portfolio.

Related: Toyota Develops Personal Transport Assistance Robot ‘Winglet’No Excessive Senior Executive Pay at ToyotaMore on Non-Auto Toyota