Tag Archives: science webcasts

Photosynthesis: Science Explained

Another very good webcast on a science topic from Crash Course. It is packed with info, thankfully you can pause and rewind as much as you need. Well normally you can, YouTube decided to not let me do that just now 🙁

Related: Exploring Eukaryotic CellsScience Summary: PhotosynthesisTen Things Everyone Should Know About ScienceGamers Use Foldit to Solve Enzyme Configuration in 3 Weeks That Stumped Scientists for Over a Decade

Star Stuff: The Universe is In Us

Great statement from Neil DeGrasse Tyson on “what is the most astounding fact you can share with us about the universe.”

“The atoms that comprise life on earth, the atoms that make up the human body, are traceable to the crucibles that cooked light elements into heavy elements in their core under extreme temperatures and pressures. These stars, the high mass ones among them, went unstable in their later years. They collapsed and then exploded scattering their enriched guts across the galaxy. Guts made of carbon, nitrogen, oxygen, and all the fundamental ingredients of life itself. These ingredients become part of gas clouds that condense, collapse, form the next generation of solar systems: stars with orbiting planets. And those planets now have the ingredients for life itself. So when I look up at the night sky and I know that, yes we are part of this universe, we are in this universe, but perhaps more important than both of those facts, is that the universe is in us… my atoms came from those stars….”

I think this might well be my thought on the most astounding fact also. Ever since I learned the atoms we are made of were created inside stars it has never ceased to amaze me.

Neil DeGrasse Tyson is amazing. I would edit his statement a bit myself, though, to make it:

“The most astounding fact is that the atoms that comprise life on earth, the atoms that make up the human body, were created in the crucible of stars that cooked light elements into heavy elements. Those stars went unstable, in their later years: they collapsed and then explored scattering their enriched cores across the galaxy. Those stars made the carbon, nitrogen, oxygen, and all the fundamental ingredients of life itself. Those ingredients became part of gas clouds that condensed to form the next generation of solar systems: stars with orbiting planets. And those planets have the ingredients for life. So when I look up at the night sky, I know that my atoms came from the predecessors of the stars I see.”

Related: Scientifically Literate People See a Different WorldTen Things Everyone Should Know About ScienceGravity and the Scientific MethodThe Importance of Science Education

Exploring Eukaryotic Cells

This webcast is packed with information on the makeup and function of eukaryotic cells, which are the type of cells found in animals. It is part of a interesting series of science webcasts by Crash Course. The webcast style might be a bit too hyperactive and flippant for some but the content is quite interesting and the videos they are are of similar style and quality so if you like this one you can subscribe to their channel. They offer quite a few webcasts on science but they also offer webcasts on history.

Related: Plants, Unikonts, Excavates and SARsHow Cells AgeMidichloria mitochondrii

Cool Animation of a Virus Invading a Person’s Body

Flu Attack! How A Virus Invades Your Body

First, some new viruses get caught in mucus and other fluids inside your body and are destroyed. Other viruses get expelled in coughs and sneezes. Second, lots of those new viruses are lemons. They don’t work that well. Some don’t have the right “keys” to invade healthy cells so they can’t spread the infection. And third, as the animation shows, your immune system is busy attacking the viruses whenever and wherever possible.

That is why most of the time, after a struggle (when you get a fever and need to lie down), your immune system rebounds, and, in time, so do you.

A health body with a strong immune system is able to fight off viruses, and other health issues more easily. Also when you body has run across a specific virus before it is ready to fight it. It has cataloged that virus and is on the look out for it and is prepared to produce specialized cells to attack it. The flu vaccinations you get are priming your body to be ready to attack if that virus is found. Those antibodies take about 2 weeks to build up in sufficient numbers to offer protection against the flu. Viruses are constantly mutating which helps them evade your detectors. This stuff is so amazing. And your body is just doing this stuff every day while you watch youtube or play basketball or…

Related: Antigen Shift in Influenza VirusesLearning How Viruses Evade the Immune SystemHow to Stay Healthy: Avoiding the Flu

NASA Biocapsules Deliver Medical Interventions Based Upon What They Detect in the Body

Very cool innovation from NASA. The biocapsule monitors the environment (the body it is in) and responds with medical help. Basically it is acting very much like your body, which does exactly that: monitors and then responds based on what is found.

The Miraculous NASA Breakthrough That Could Save Millions of Lives

The Biocapsules aren’t one-shot deals. Each capsule could be capable of delivering many metred doses over a period of years. There is no “shelf-life” to the Biocapsules. They are extremely resilient, and there is currently no known enzyme that can break down their nanostructures. And because the nanostructures are inert, they are extremely well-tolerated by the body. The capsules’ porous natures allow medication to pass through their walls, but the nanostructures are strong enough to keep the cells in one place. Once all of the cells are expended, the Biocapsule stays in the body, stable and unnoticed, until it is eventually removed by a doctor back on Earth.

Dr. Loftus [NASA] thinks we could realistically see wildspread usage on Earth within 10 to 15 years.

The cells don’t get released from the capsule. The cells inside the capsule secrete therapeutic molecules (proteins, peptides), and these agents exit the capsule by diffusion across the capsule wall.

NASA plans to use the biocapsules in space, but they also have very promising uses on earth. They can monitor a diabetes patient and if insulin is needed, deliver it. No need for the person to remember, or give themselves a shot of insulin. The biocapsule act just like out bodies do, responding to needs without us consciously having to think about it. They can also be used to provide high dose chemotherapy directly to the tumor site (thus decreasing the side effects and increasing the dosage delivered to the target location. Biocapsules could also respond to severe allergic reaction and deliver epinephrine (which many people know have to carry with them to try and survive an attack).

It would be great if this were to have widespread use 15 years from now. Sadly, these innovations tend to take far longer to get into productive use than we would hope. But not always, so here is hoping this innovation from NASA gets into ourselves soon.

Related: Using Bacteria to Carry Nanoparticles Into CellsNanoparticles With Scorpion Venom Slow Cancer SpreadSelf-Assembling Cubes Could Deliver MedicineNanoengineers Use Tiny Diamonds for Drug Delivery

Webcast of a T-cell Killing a Cancerous Cell

Very cool. Very good job by University of Cambridge to make this kind of material available openly online. I find this kind of video amazing. Every day you body has this going on all day long. How amazing.

This is what it looks like when cancer gets smacked down by a T cell

This was shot by University of Cambridge medical researcher Alex Ritter, and is 92 times faster than real time.

Cells of the immune system protect the body against pathogens. If cells in our bodies are infected by viruses, or become cancerous, then killer cells of the immune system identify and destroy the affected cells. Cytotoxic T cells are very precise and efficient killers. They are able to destroy infected or cancerous cells, without destroying healthy cells surrounding them.

Related: Using Bacteria to Carry Nanoparticles Into CellsHow Cells AgeVideo showing malaria breaking into cellSynthetic Biologists Design a Gene that Forces Cancer Cells to Commit Suicide

How Lysozyme Protein in Our Tear-Drops Kill Bacteria

A disease-fighting protein in our teardrops has been tethered to a tiny transistor, enabling UC Irvine scientists to discover exactly how it destroys dangerous bacteria. The research could prove critical to long-term work aimed at diagnosing cancers and other illnesses in their very early stages.

Ever since Nobel laureate Alexander Fleming found that human tears contain antiseptic proteins called lysozymes about a century ago, scientists have tried to solve the mystery of how they could relentlessly wipe out far larger bacteria. It turns out that lysozymes have jaws that latch on and chomp through rows of cell walls like someone hungrily devouring an ear of corn.

“Those jaws chew apart the walls of the bacteria that are trying to get into your eyes and infect them,” said molecular biologist and chemistry professor Gregory Weiss, who co-led the project with associate professor of physics & astronomy Philip Collins.

The researchers decoded the protein’s behavior by building one of the world’s smallest transistors – 25 times smaller than similar circuitry in laptop computers or smartphones. Individual lysozymes were glued to the live wire, and their eating activities were monitored.

“Our circuits are molecule-sized microphones,” Collins said. “It’s just like a stethoscope listening to your heart, except we’re listening to a single molecule of protein.”

It took years for the UCI scientists to assemble the transistor and attach single-molecule teardrop proteins. The scientists hope the same novel technology can be used to detect cancerous molecules. It could take a decade to figure out but would be well worth it, said Weiss, who lost his father to lung cancer.

“If we can detect single molecules associated with cancer, then that means we’d be able to detect it very, very early,” Weiss said. “That would be very exciting, because we know that if we treat cancer early, it will be much more successful, patients will be cured much faster, and costs will be much less.”

The project was sponsored by the National Cancer Institute and the National Science Foundation. Co-authors of the Science paper are Yongki Choi, Issa Moody, Patrick Sims, Steven Hunt, Brad Corso and Israel Perez.

Related: full press releaseWhy ‘Licking Your Wounds’ WorksHow Bleach Kills BacteriaAlgorithmic Self-Assembly

Brian Cox – Lecture on Science and Quantum Mechanics

Brian Cox gave a wonderful lecture at the Royal Institution of Great Britain. This is one more great thing the internet makes possible: have great fun while you learn. Enjoy.

With the help of Jonathan Ross, Simon Pegg, Sarah Millican and James May, Brian shows how diamonds – the hardest material in nature – are made up of nothingness; how things can be in an infinite number of places at once; why everything we see or touch in the universe exists; and how a diamond in the heart of London is in communication with the largest diamond in the cosmos.

Related: Quantum Mechanics Made Relatively Simple Podcasts by Hana BetheBrian Cox Particle Physics WebcastPhysicists Observe New Property of Matter

Cooking with Chemistry: Hard Candy

The video by Richard Hartel, professor of food engineering at the University of Wisconsin-Madison, demonstrates how the molten liquid candy cools to form what from a technical standpoint actually is a glass. Unlike window glass made of silica, this tasty glass is made of sugar.

Viscosity describes a fluid’s internal resistance to flow and may be thought of as a measure of fluid friction. Water has very little viscosity (unless it is frozen). Thick honey has higher viscosity (especially if it is cooler – I keep my honey in the fridge and it does not flow very quickly).

As I have said before if I had understood the chemistry behind cooking as a kid I think I would have been much more interested in cooking.

Related: Understanding the Chemistry Behind CookingThe Man Who Unboiled an EggTracking the Ecosystem Within Us

Bacteria Living Inside Animals Cells

Interesting discussion on the bacteria living inside our cells. For example, many plants have bacteria that get inside the root system and then help fix nitrogen for the plant. Some sea slugs take the chloroplasts from algae they eat and incorporate it themselves, allowing them to get energy from light (photosynthesis): they become photosynthetic slugs.

Adults need science education more than kids do is also a good segment. And I agree strongly that we (as individuals and society) lose a great deal when we fail to help people enjoy learning about science during their whole lives.

I also like the usability of this widget above, where it lets you include the internal links easily into a video.

Related: Symbiotic relationship between ants and bacteriaBiologists Identified a New Way in Which Bacteria Hijack Healthy CellsUsing Bacteria to Carry Nanoparticles Into CellsThe Economic Consequences of Investing in Science Education