Tag Archives: science webcasts

Energy Secretary Steve Chu Speaks On Funding Science Research

Energy Secretary Steve Chu (and Nobel Laureate) speaks with Google CEO Eric Schmidt about science research. One of the things Steve Chu is doing is funding high risk experiments that have great potential. This is something that is often said should be done but then people resort to safe investments in research. Taking these risks is a very good idea.

This is another example the remarkable way Google operates. The CEO actually understands science and the public good. Google also provides a huge amount of great material online in the form of webcasts of those speaking at Google. Google behaves like a company run by engineers. Other companies have engineers in positions of power but behave like companies run by any MBAs (whether they are lawyers, accountants, marketers or engineers).

Related: President’s Council of Advisors on Science and TechnologyScientists and Engineers in CongressEric Schmidt on Google, Education and EconomicsLarry Page on How to Change the WorldDiplomacy and Science ResearchGoogle Investing Huge Sums in Renewable Energy and is Hiring

2009 Nobel Prize in Physiology or Medicine

This year’s Nobel Prize in Physiology or Medicine is awarded to three scientists who have solved a major problem in biology: how the chromosomes can be copied in a complete way during cell divisions and how they are protected against degradation. The Nobel Laureates have shown that the solution is to be found in the ends of the chromosomes – the telomeres – and in an enzyme that forms them – telomerase.

The long, thread-like DNA molecules that carry our genes are packed into chromosomes, the telomeres being the caps on their ends. Elizabeth Blackburn and Jack Szostak discovered that a unique DNA sequence in the telomeres protects the chromosomes from degradation. Carol Greider and Elizabeth Blackburn identified telomerase, the enzyme that makes telomere DNA. These discoveries explained how the ends of the chromosomes are protected by the telomeres and that they are built by telomerase.

If the telomeres are shortened, cells age. Conversely, if telomerase activity is high, telomere length is maintained, and cellular senescence is delayed. This is the case in cancer cells, which can be considered to have eternal life. Certain inherited diseases, in contrast, are characterized by a defective telomerase, resulting in damaged cells. The award of the Nobel Prize recognizes the discovery of a fundamental mechanism in the cell, a discovery that has stimulated the development of new therapeutic strategies.

Scientists began to investigate what roles the telomere might play in the cell. Szostak’s group identified yeast cells with mutations that led to a gradual shortening of the telomeres. Such cells grew poorly and eventually stopped dividing. Blackburn and her co-workers made mutations in the RNA of the telomerase and observed similar effects in Tetrahymena. In both cases, this led to premature cellular ageing – senescence. In contrast, functional telomeres instead prevent chromosomal damage and delay cellular senescence. Later on, Greider’s group showed that the senescence of human cells is also delayed by telomerase. Research in this area has been intense and it is now known that the DNA sequence in the telomere attracts proteins that form a protective cap around the fragile ends of the DNA strands.

Many scientists speculated that telomere shortening could be the reason for ageing, not only in the individual cells but also in the organism as a whole. But the ageing process has turned out to be complex and it is now thought to depend on several different factors, the telomere being one of them. Research in this area remains intense.

The 3 awardees are citizens of the USA; two were born elsewhere.
Read more about their research at the Nobel Prize web site.

Molecular biologist Elizabeth Blackburn–one of Time magazine’s 100 “Most Influential People in the World” in 2007–made headlines in 2004 when she was dismissed from the President’s Council on Bioethics after objecting to the council’s call for a moratorium on stem cell research and protesting the suppression of relevant scientific evidence in its final report.

Related: Nobel Prize in Physiology or Medicine 20082007 Nobel Prize in Physiology or Medicine2006 Nobel Prize in Physiology or Medicine

Webcast of Dr. Elizabeth Blackburn speaking at Google:
Continue reading

Test it Out, Experiment by They Might Be Giants

Put It to the Test is one of the songs on the great new Album and animated DVD from They Might Be Giants: Here Comes Science.

Are you sure that thing is true, or did someone just tell it to you.
Come up with a test. Test it out.
Find a way to show what would happen if you were incorrect. Test it out.
A fact is just a fantasy unless it can be checked.
Make a test. Test it out.

A fun song on fundamentals of experimenting to the scientific method.

Related: Here Comes Science by They Might Be Giantsposts on experimentingMythBuster: 3 Ways to Fix USA Science EducationScience Toys You Can Make With Your KidsCorrelation is Not Causation

Friday Fun: Hammer and Feather Drop on Moon

Gravity acts in the same way on a feather and hammer. The reason the hammer falls faster on earth is due to air resistance (well and if you try outside – wind could blow the feather too).

At the end of the last Apollo 15 moon walk, Commander David Scott performed a live demonstration for the television cameras. He held out a geologic hammer and a feather and dropped them at the same time. Because they were essentially in a vacuum, there was no air resistance and the feather fell at the same rate as the hammer, as Galileo had concluded hundreds of years before – all objects released together fall at the same rate regardless of mass. Mission Controller Joe Allen described the demonstration in the “Apollo 15 Preliminary Science Report”:

During the final minutes of the third extravehicular activity, a short demonstration experiment was conducted. A heavy object (a 1.32-kg aluminum geological hammer) and a light object (a 0.03-kg falcon feather) were released simultaneously from approximately the same height (approximately 1.6 m) and were allowed to fall to the surface. Within the accuracy of the simultaneous release, the objects were observed to undergo the same acceleration and strike the lunar surface simultaneously, which was a result predicted by well-established theory, but a result nonetheless reassuring considering both the number of viewers that witnessed the experiment and the fact that the homeward journey was based critically on the validity of the particular theory being tested.

Related: posts on physicsPhun PhysicsLearning About the MoonWhat Are Flowers For?

Neil Degrasse Tyson: Scientifically Literate See a Different World

From the interview of Neil Degrasse Tyson from 3 July 2009.

“If you are scientifically literate the world looks very different to you. Its not just a lot of mysterious things happening. There is a lot we understand out there. And that understanding empowers you to, first, not be taken advantage of by others who do understand it. And second there are issues that confront society that have science as their foundation. If you are scientifically illiterate, in a way, you are disenfranchising yourself from the democratic process, and you don’t even know it.”

I agree, and, as I have said before, when a society allows a scientific illiteracy to continue then the potential for abuse by those that manipulate those that are scientifically illiterate leaves the society vulnerable to making very bad choices.

Related: Nearly Half of Adults in the USA Don’t Know How Long it Takes the Earth to Circle the Sunposts on scientific literacyEvolution, Methane, Jobs, Food and MoreAstronaut self portraitCosmology Questions AnsweredSarah, aged 3, Learns About Soap

Atomic Force Microscopy Image of a Molecule

image of a pentacene moleculeThe delicate inner structure of a pentacene molecule imaged with an atomic force microscope. For the first time, scientists achieved a resolution that revealed the chemical structure of a molecule. The hexagonal shapes of the five carbon rings in the pentacene molecule are clearly resolved. Even the positions of the hydrogen atoms around the carbon rings can be deduced from the image. (Pixels correspond to actual data points). Image courtesy of IBM Research – Zurich

IBM scientists have been able to image the “anatomy” — or chemical structure — inside a molecule with unprecedented resolution. “Though not an exact comparison, if you think about how a doctor uses an x-ray to image bones and organs inside the human body, we are using the atomic force microscope to image the atomic structures that are the backbones of individual molecules,” said IBM Researcher Gerhard Meyer. “Scanning probe techniques offer amazing potential for prototyping complex functional structures and for tailoring and studying their electronic and chemical properties on the atomic scale.”

The AFM uses a sharp metal tip to measure the tiny forces between the tip and the sample, such as a molecule, to create an image. In the present experiments, the molecule investigated was pentacene. Pentacene is an oblong organic molecule consisting of 22 carbon atoms and 14 hydrogen atoms measuring 1.4 nanometers in length. The spacing between neighboring carbon atoms is only 0.14 nanometers—roughly 1 million times smaller then the diameter of a grain of sand. In the experimental image, the hexagonal shapes of the five carbon rings as well as the carbon atoms in the molecule are clearly resolved. Even the positions of the hydrogen atoms of the molecule can be deduced from the image.

Related: MRI That Can See Bacteria, Virus and Proteinsimages of the naphthalocyanine molecule in the ‘on’ and the ‘off’ stateWhat is a Molecule?

Read full press release: IBM Scientists First to Image the “Anatomy” of a Molecule
Continue reading

Physics from Universe to Multiverse

2005 video of Dr. Michio Kaku speaking on BBC on physics from Universe to Multiverse.

Unfortunately BBC leaders decided to hide this from the world and removed the video. Maybe scientists should stop talking to organizations won’t share the output with the world.

Related: Extra-Universal MatterBefore the Big BangGreat Physics Webcast LecturesNeutrino Detector Searching for String Theory Evidence

Roger Tsien Lecture On Green Florescent Protein

Nobel Laureate Roger Tsien discusses his research on green florescent protein. From the Nobel Prize web site:

n the 1960s, when the Japanese scientist Osamu Shimomura began to study the bioluminescent jelly-fish Aequorea victoria, he had no idea what a scientific revolution it would lead to. Thirty years later, Martin Chalfie used the jellyfish’s green fluorescent protein to help him study life’s smallest building block, the cell.

when Anton van Leeuwenhoek invented the microscope in the 17th century a new world opened up. Scientists could suddenly see bacteria, sperm and blood cells. Things they previously did not know even existed. This year’s Nobel Prize in Chemistry rewards a similar effect on science. The green fluorescent protein, GFP, has functioned in the past decade as a guiding star for biochemists, biologists, medical scientists and other researchers.

This is where the third Nobel Prize laureate Roger Tsien makes his entry. His greatest contribution to the GFP revolution was that he extended the researchers’ palette with many new colours that glowed longer and with higher intensity.

To begin with, Tsien charted how the GFP chromophore is formed chemically in the 238-amino-acid-long GFP protein. Researchers had previously shown that three amino acids in position 65–67 react chemically with each other to form the chromosphore. Tsien showed that this chemical reaction requires oxygen and explained how it can happen without the help of other proteins.

With the aid of DNA technology, Tsien took the next step and exchanged various amino acids in different parts of GFP. This led to the protein both absorbing and emitting light in other parts of the spectrum. By experimenting with the amino acid composition, Tsien was able to develop new variants of GFP that shine more strongly and in quite different colours such as cyan, blue and yellow. That is how researchers today can mark different proteins in different colours to see their interactions.

Related: The Nobel Prize in Chemistry 2008Nobel Laureate Initiates Symposia for Student ScientistsNobel Prize in Chemistry (2006)

Saving the World with Science and Mushrooms

Entrepreneurial mycologist Paul Stamets studies mushrooms. The focus of Stamets’ research is the Northwest’s native fungal genome, mycelium, but along the way he has filed 22 patents for mushroom-related technologies, including pesticidal fungi that trick insects into eating them, and mushrooms that can break down the neurotoxins used in nerve gas.

The webcast really gets interesting at minute 9 or so (in my opinion) with 6 specific examples.

Related: Fun FungiThinking Slime MouldsMicrobe Types

Intel Science and Engineering Fair 2009 Webcasts

Tara Adiseshan, 14, of Charlottesville, Virginia; Li Boynton, 17, of Houston; and Olivia Schwob, 16, of Boston were selected from 1,563 young scientists from 56 countries, regions and territories for their commitment to innovation and science. Each received a $50,000 scholarship from the Intel Foundation.

(video removed, so the embed code has been removed)

In the webcast, Tara Adiseshan, talks about her project studying the evolutionary ties between nematodes (parasites) and sweat bees. She identified and classified the evolutionary relationships between sweat bees and the nematodes (microscopic worms) that live inside them. Tara was able to prove that because the two have such ecologically intimate relationships, they also have an evolutionary relationship. That is to say, if one species evolves, the other will follow.

Li Boynton developed a biosensor from bioluminescent bacteria (a living organism that gives off light) to detect the presence of contaminants in public water. Li’s biosensor is cheaper and easier to use than current biosensors, and she hopes it can be used in developing countries to reduce water toxicity. Li Boynton on What’s Great About Science:

Olivia Schwob isolated a gene that can be used to improve the intelligence of a worm. The results could help us better understand how humans learn and even prevent, treat and cure mental disabilities in the future.

In addition to the three $50,000 top winners, more than 500 Intel International Science and Engineering Fair participants received scholarships and prizes for their groundbreaking work. Intel awards included 19 “Best of Category” winners who each received a $5,000 Intel scholarship and a new laptop. In total, nearly $4 million is scholarships and awards were provided.

Related: Intel ISEF 2009 Final GalaGirls Sweep Top Honors at Siemens Competition in Math, Science and TechnologyIntel International Science and Engineering Fair 2007Worldwide Science Wizkids at Intel ISEF2008 Intel Science Talent Search
Continue reading