Tag Archives: scientific inquiry

Does Diet Soda Result in Weight Gain?

Most of us want medical studies to provide clearer (more certain, more specific, more universal) indications than they actually provide. The conclusion of medical studies are often very clouded. Each person has a myriad of complex factors effecting how nutrition, activity and medication will affect us. Certain general conclusion can be drawn but it is very complex and difficult to universally state without various equivocations.

Advice For Diet Soda Lovers: Skip The Chips

Researchers at the University of North Carolina-Chapel Hill found that diet soda drinkers who ate a so-called “prudent” diet, rich in fruit, fish, vegetables, whole grains, nuts and milk, were significantly less likely to develop metabolic syndrome over 20 years than those who ate a “Western diet” heavy in fried foods, meats and sugars.

Metabolic syndrome is a condition characterized by excess abdominal fat, elevated blood sugar, high blood pressure, elevated triglycerides and low HDL cholesterol. About 32 percent of the participants in the “Western diet” cluster developed the condition.

The question of whether diet soda truly helps people manage their weight turns out to be a very tough one to answer.

Conflicting findings abound. A large study published in the New England Journal of Medcine last year found that diet soda had no effect on weight. But another one, published in 2008, found that drinking more than three diet drinks a day led to weight gain.

I would like to know, with much greater certainty what nutritional and food related advice I need to consider when making my choices. To a significant degree I think there is going to be quite a bit of uncertainty (much more than we want) for at least the next 30 years (projecting far out into the future with any accuracy seems very difficult to me.

I am skeptical of purely correlational results. You can try to have similar subsets of people but that is actually hard and if you allow for similar groups and then let the choose something (like diet sodas or not) the chance of that actually being a significant choice that results in many other decisions being different between the subgroups seems a big risk (that makes accepting the correlation as evidence as risky). When you have a scientific explanation it makes the evidence much more compelling, but it is also easy to be taken in by explanations meant to fit the results of a study.

I can believe diet soda can do some bad things to your health. I believe if you are trying to reduce your weight by reducing calories drinking diet soda in place of sugary soda is a big help. I can believe drinking water instead of diet soda would be even better. I want caffeine and don’t like coffee. I have cut down drinking Mountain Dew to less than 2 a week. I have substituted diet soda over the last year. I am not sure that is the right choice, but it is the one I have made so far.

Related: Science Continues to Explore Causes of Weight GainStudy Shows Weight Loss From Calorie Reduction Not Low Fat or Low CarbAnother Paper Questions Scientific Paper AccuracyContradictory Medical Studies

Medical Studies Showing Largest Benefits Often Prove to be False

There is another study showing the results of health studies often are proven false. Medical studies with striking results often prove false

If a medical study seems too good to be true, it probably is, according to a new analysis.

In a statistical analysis of nearly 230,000 trials compiled from a variety of disciplines, study results that claimed a “very large effect” rarely held up when other research teams tried to replicate them.

The report should remind patients, physicians and policymakers not to give too much credence to small, early studies that show huge treatment effects, Ioannidis said.

The Stanford professor chose to publish this paper in a closed science publication. But previously he published openly on: Why Most Published Research Findings Are False.

Related: Majority of Clinical Trials Don’t Provide Meaningful EvidenceStatistical Errors in Medical StudiesMistakes in Experimental Design and InterpretationHow to Deal with False Research Findings

Nobel Prize in Physiology or Medicine 2012 for Reprogramming Cells to be Pluripotent

The Nobel Prize in Physiology or Medicine 2012 was awarded “for the discovery that mature cells can be reprogrammed to become pluripotent.” The prize goes jointly to Sir John B. Gurdon, Gurdon Institute in Cambridge, UK and Shinya Yamanaka, Kyoto University (he is also a senior investigator at the Gladstone Institutes in the USA).

The Nobel Prize recognizes two scientists who discovered that mature, specialised cells can be reprogrammed to become immature cells capable of developing into all tissues of the body. Their findings have revolutionised our understanding of how cells and organisms develop.

John B. Gurdon discovered (in 1962) that the specialisation of cells is reversible. In a classic experiment, he replaced the immature cell nucleus in an egg cell of a frog with the nucleus from a mature intestinal cell. This modified egg cell developed into a normal tadpole. The DNA of the mature cell still had all the information needed to develop all cells in the frog.

Shinya Yamanaka discovered more than 40 years later, in 2006, how intact mature cells in mice could be reprogrammed to become immature stem cells. Surprisingly, by introducing only a few genes, he could reprogram mature cells to become pluripotent stem cells, i.e. immature cells that are able to develop into all types of cells in the body.

These groundbreaking discoveries have completely changed our view of the development and cellular specialisation. We now understand that the mature cell does not have to be confined forever to its specialised state. Textbooks have been rewritten and new research fields have been established. By reprogramming human cells, scientists have created new opportunities to study diseases and develop methods for diagnosis and therapy.

All of us developed from fertilized egg cells. During the first days after conception, the embryo consists of immature cells, each of which is capable of developing into all the cell types that form the adult organism. Such cells are called pluripotent stem cells. With further development of the embryo, these cells give rise to nerve cells, muscle cells, liver cells and all other cell types – each of them specialised to carry out a specific task in the adult body. This journey from immature to specialised cell was previously considered to be unidirectional. It was thought that the cell changes in such a way during maturation that it would no longer be possible for it to return to an immature, pluripotent stage.

Related: 2011 Nobel Prize in Physiology or MedicineNobel Prize in Physiology or Medicine 20082012 Nobel Prize in Chemistry to Robert Lefkowitz and Brian Kobilka

Continue reading

Capuchin Monkeys Don’t Like Being Paid Less

Quite a fun video. Frans de Waal shows us a task he gave Capuchin monkeys to see if they responded to a sense of fairness. See the rest of the talk.

Frans de Waal is a Dutch primatologist and ethologist. He is the Charles Howard Candler professor of Primate Behavior in the Emory University psychology department in Atlanta, Georgia. His research centers on primate social behavior, including conflict resolution, cooperation, inequity aversion, and food-sharing.

Related: Rats Show Empathy-driven BehaviorCapuchin Monkeys Using Stone ToolsDolphin Delivers Deviously for Rewardsoverpaid executives harm companiesCrow Using a Sequence of Three Tools

Did a massive comet explode over Canada 12,900 years ago and start an ice age?

I think it is important to increase scientific literacy. One thing that is greatly misunderstood is the process for new scientific explanations being accepted by the scientific community. It is often quite a drawn out process over years (and for the explanation provided in this paper the debate is certainly still ongoing). And for issues that really shake up past explanations it can take decades and be quite contentious. I think posts tagged with “scientific inquiry” are a very interesting collection to explore.

It is important to understand the difficulty in providing evidence that satisfies the overwhelming majority of the scientific experts in any area. And it is important to understand the claims in one (or numerous papers) are not the accepted proven wisdom of the scientific community. Thankfully the process is rigorous. While mistakes can still be made, the evidence needed to substantiate a scientific hypothesis is significant. Their is still plenty of room for position to color accepted scientific wisdom. A respected professor is often able to make a claim that is more readily accepted and even more-so for to insist the new claims do not provide enough evidence in support of them to accept the new claims and have there position accepted (even when it really shouldn’t be looking just at the facts).

Topper site in middle of comet controversy

Firestone found concentrations of spherules (micro-sized balls) of metals and nano-sized diamonds in a layer of sediment dating 12,900 years ago at 10 of 12 archaeological sites that his team examined. The mix of particles is thought to be the result of an extraterrestrial object, such as a comet or meteorite, exploding in the earth’s atmosphere. Among the sites examined was USC’s Topper, one of the most pristine U.S. sites for research on Clovis, one of the earliest ancient peoples.
“This independent study is yet another example of how the Topper site with its various interdisciplinary studies has connected ancient human archaeology with significant studies of the Pleistocene,” said Goodyear, who began excavating Clovis artifacts in 1984 at the Topper site in Allendale, S.C. “It’s both exciting and gratifying.”
Younger-Dryas is what scientists refer to as the period of extreme cooling that began around 12,900 years ago and lasted 1,300 years. While that brief ice age has been well-documented – occurring during a period of progressive solar warming after the last ice age – the reasons for it have long remained unclear.

Related: Why Wasn’t the Earth Covered in Ice 4 Billion Years Ago – When the Sun was Dimmer?Unless We Take Decisive Action, Climate Change Will Ravage Our PlanetMore Evidence Supporting Einstein’s Theory of GravityAncient Whale Uncovered in Egyptian Desert

Continue reading

Key Indicator for Malignant Melanoma Found

Skin cancer detection breakthrough

The researchers found that certain biochemical elements in the DNA of normal pigment-producing skin cells and benign mole cells are absent in melanoma cells. Loss of these methyl groups — known as 5-hmC — in skin cells serves as a key indicator for malignant melanoma. Loss corresponded to more-advanced stages of melanoma as well as clinical outcome.

Strikingly, researchers were able to reverse melanoma growth in preclinical studies. When the researchers introduced enzymes responsible for 5-hmC formation to melanoma cells lacking the biochemical element, they saw that the cells stopped growing.

“It is difficult to repair the mutations in the actual DNA sequence that are believed to cause cancer,” said Christine Lian, a physician-scientist in the Department of Pathology at BWH and one of the lead authors. “So having discovered that we can reverse tumor cell growth by potentially repairing a biochemical defect that exists — not within the sequence but just outside of it on the DNA structure — provides a promising new melanoma treatment approach for the medical community to explore.”

Because cancer is traditionally regarded as a genetic disease involving permanent defects that directly affect the DNA sequence, this new finding of a potentially reversible abnormality that surrounds the DNA (thus termed “epigenetic”) is a hot topic in cancer research, according to the researchers.

In the United States, melanoma is the fifth most common type of new cancer diagnosis in men and the seventh most common type in women. The National Cancer Institute estimates that in 2012 there will be 76,250 new cases and 9,180 deaths in the United States owing to melanoma.

Thankfully scientists keep making great progress in understanding and finding potential clues to treating cancer. And big gains have been made in treating some cancers over the last few decades. But the research successes remain difficult to turn into effective solutions in treating patients.

I am thankful we have so many scientists doing good work in this difficult and important area (cancer).

Related: Webcast of a T-cell Killing a Cancerous CellNanoparticles With Scorpion Venom Slow Cancer SpreadDNA Passed to Descendants Changed by Your LifeResearchers Find Switch That Allows Cancer Cells to Spread

Should Giant Viruses Be Included on the Tree of Life?

A new study of giant viruses supports the idea that viruses are ancient living organisms and not inanimate molecular remnants. The study may reshape the universal family tree, adding a fourth major branch to the three that most scientists agree represent the fundamental domains of life. But I am not sure that makes sense. The reason given for viruses not being “life” is that they cannot reproduce themselves – they hijack living cells to reproduce. The research in the past history of viruses as they evolved into current viruses is interesting but I don’t see the reason to classify current viruses as life.

The researchers used a relatively new method to peer into the distant past. Rather than comparing genetic sequences, which are unstable and change rapidly over time, they looked for evidence of past events in the three-dimensional, structural domains of proteins. These structural motifs, called folds, are relatively stable molecular fossils that – like the fossils of human or animal bones – offer clues to ancient evolutionary events, said University of Illinois crop sciences and Institute for Genomic Biology professor Gustavo Caetano-Anollés, who led the analysis.

“Just like paleontologists, we look at the parts of the system and how they change over time,” Caetano-Anollés said. Some protein folds appear only in one group or in a subset of organisms, he said, while others are common to all organisms studied so far.

“We make a very basic assumption that structures that appear more often and in more groups are the most ancient structures,” he said.

Most efforts to document the relatedness of all living things have left viruses out of the equation, Caetano-Anollés said.

“We’ve always been looking at the Last Universal Common Ancestor by comparing cells,” he said. “We never added viruses. So we put viruses in the mix to see where these viruses came from.”

The researchers conducted a census of all the protein folds occurring in more than 1,000 organisms representing bacteria, viruses, the microbes known as archaea, and all other living things. The researchers included giant viruses because these viruses are large and complex, with genomes that rival – and in some cases exceed – the genetic endowments of the simplest bacteria, Caetano-Anollés said.

Related: Plants, Unikonts, Excavates and SARsBacteriophages: The Most Common Life-Like Form on Earth8 Percent of the Human Genome is Old Virus GenesMicrobes Retroviruses

Open access paper: Giant Viruses Coexisted With the Cellular Ancestors and Represent a Distinct Supergroup Along With Superkingdoms Archaea, Bacteria and Eukarya

The discovery of giant viruses with genome and physical size comparable to cellular organisms, remnants of protein translation machinery and virus-specific parasites (virophages) have raised intriguing questions about their origin. Evidence advocates for their inclusion into global phylogenomic studies and their consideration as a distinct and ancient form of life.

Results call for a change in the way viruses are perceived. They likely represent a distinct form of life that either predated or coexisted with the last universal common ancestor (LUCA) and constitute a very crucial part of our planet’s biosphere.

Continue reading

Learning About Life over 200 Million Years Ago From Samples Trapped In Amber

230-Million-Year-Old Mite Found in Amber by Charles Choi

One way to learn more about prehistoric life is amber — fossilized tree resin. Before it hardened, this ooze often dripped over bugs and other wildlife perched on its tree’s bark, entombing them for millions of years.

“Amber is an extremely valuable tool for paleontologists because it preserves specimens with microscopic fidelity, allowing uniquely accurate estimates of the amount of evolutionary change over millions of years,” Grimaldi said.

Scientists have now revealed arthropods trapped in 230-million-year-old amber from northeastern Italy, which appears to hold the most abundant outcrops of Triassic amber in the world. These are the oldest amber-trapped arthropods by about 100 million years, and are the first arthropods to be found in amber from the Triassic.

These mites are unexpectedly similar to their closest relatives, modern gall mites, creatures that feed on plants and cause abnormal growths known as galls to form around them.

“You would think that by going back to the Triassic you’d find a transitional form of gall mite, but no,” Grimaldi said. “Even 230 million years ago, all of the distinguishing features of this family were there — a long, segmented body; only two pairs of legs instead of the usual four found in mites; unique feather claws.”

These discoveries are very cool. The process of the discovery is often fairly tedious.

“The challenge for us, personally, is the tedious work required to screen through so many tiny droplets of amber — 70,000 droplets for three specimens, in this case!”

Related: Marine Plankton From 100 Million Years Ago Found in AmberDino-Era Feathers Found Encased in AmberAmber Pieces Containing Remains from Dinosaurs and Birds Show Feather Evolution

Antibiotics fuel obesity by creating microbe upheavals

Antibiotics fuel obesity by creating microbe upheavals

We aren’t single individuals, but colonies of trillions. Our bodies, and our guts in particular, are home to vast swarms of bacteria and other microbes. This “microbiota” helps us to harvest energy from our food by breaking down the complex molecules that our own cells cannot cope with. They build vitamins that we cannot manufacture. They ‘talk to’ our immune system to ensure that it develops correctly, and they prevent invasions from other more harmful microbes. They’re our partners in life.

What happens when we kill them?

Farmers have been doing that experiment in animals for more than 50 years. By feeding low doses of antibiotics to healthy farm animals, they’ve found that they could fatten up their livestock by as much as 15 percent.

Ilseung Cho from the New York University School of Medicine has confirmed that hypothesis. By feeding antibiotics to young mice, he has shown that the drugs drastically change the microscopic communities within their guts, and increase the amount of calories they harvest from food. The result: they became fatter.

I continue to believe we are far to quick to medicate. We tremendously overuse anti-biotis and those costs are huge. They often are delays and systemic and given our current behavior we tend to ignore delayed and systemic problems.

The link between the extremely rapid rise in obesity and the overuse of anti-biotics is in need of much more study. It seems a possible contributing factor but there is much more data needed to confirm such a link. And other factors still seem dominant to me: increase in caloric intake and decrease in physical activity.

Related: Science Continues to Explore Causes of Weight GainWaste from Gut Bacteria Helps Host Control WeightHealthy Diet, Healthy Living, Healthy WeightRaising Our Food Without Antibiotics