Tag Archives: Students

The DIY Movement Revives Learning by Doing

School for Hackers

The ideal educational environment for kids, observes Peter Gray, a professor of psychology at Boston College who studies the way children learn, is one that includes “the opportunity to mess around with objects of all sorts, and to try to build things.” Countless experiments have shown that young children are far more interested in objects they can control than in those they cannot control—a behavioral tendency that persists. In her review of research on project-based learning (a hands-on, experience-based approach to education), Diane McGrath, former editor of the Journal of Computer Science Education, reports that project-based students do as well as (and sometimes better than) traditionally educated students on standardized tests, and that they “learn research skills, understand the subject matter at a deeper level than do their traditional counterparts, and are more deeply engaged in their work.” In The Upside of Irrationality, Dan Ariely, a behavioral psychologist at Duke University, recounts his experiments with students about DIY’s effect on well-being and concludes that creating more of the things we use in daily life measurably increases our “feelings of pride and ownership.” In the long run, it also changes for the better our patterns of thinking and learning.

Unfortunately, says Gray, our schools don’t teach kids how to make things, but instead train them to become scholars, “in the narrowest sense of the word, meaning someone who spends their time reading and writing. Of course, most people are not scholars. We survive by doing things.”

I am a big believer in fostering kids natural desire to learn by teaching through tinkering.

Related: Build Your Own Tabletop Interactive Multi-touch ComputerHome Engineering: Building a HovercraftScience Toys You Can Make With Your KidsHands-on High School Engineering Education in MinnesotaAutomatic Cat Feeder

Vaccines Can’t Provide Miraculous Results if We Don’t Take Them

Vaccine preventable diseases used to ravage our health. In the USA, we are lucky to live in a society where those before us have taken vaccines and reduced to very low levels the attack vectors for these diseases. If nearly everyone is vaccinated for polio, even if it crops up with one person, most likely it won’t spread. As more people chose to risk the health of others in the society by failing to vaccinate, an infection can spread rapidly. There are some people who can’t be vaccinated for one reason or another (normally dangerous allergies) and vaccines, while very effective are not 100% effective. So any person that fails to vaccinate their kids endangers society and those who cannot be vaccinated.

Six Top Vaccine Myths

Myth 1: It’s not necessary to vaccinate kids against diseases that have been largely eradicated in the United States.
Reality: Although some diseases like polio and diphtheria aren’t often seen in America (in large part because of the success of the vaccination efforts), they can be quite common in other parts of the world. The Centers for Disease Control and Prevention warns that travelers can unknowingly bring these diseases into the United States, and if we were not protected by vaccinations, these diseases could quickly spread throughout the population. At the same time, the relatively few cases currently in the U.S. could very quickly become tens or hundreds of thousands of cases without the protection we get from vaccines. Brown warns that these diseases haven’t disappeared, “they are merely smoldering under the surface.”

Most parents do follow government recommendations: U.S. national immunization rates are high, ranging from 85 percent to 93 percent, depending on the vaccine, according to the CDC.

See the 2010 Child & Adolescent Immunization Schedules from the CDC and protect your children and society. The suffering caused by preventable diseases like polio and small pox was huge. We should not delude ourselves into thinking that those diseases are not dangerous. They are. We have been protected by all those taking vaccines. If people in the society don’t take vaccines that increases the health risks to the society at large.

Routine smallpox vaccination among the American public stopped in 1972 after the disease was eradicated in the United States. The United States government has enough vaccine to vaccinate every person in the United States in the event of a smallpox emergency (mainly due to concerns about bio-terrorism).

U.S. Adults Dying of Preventable Diseases

Diseases easily preventable by adult vaccines kill more Americans each year than car wrecks, breast cancer, or AIDS.

“We have a chronic disease epidemic in the U.S. It is taxing our families and taxing our economy,” the CDC’s Anne Schuchat, MD, said at the news conference. “We have a need for culture change in America. We worry about things when they are really bad rather than focusing on prevention, which can keep us out of the hospital and keep our families thriving.”

In other parts of the world the danger is not from those who chose not to vaccinate their children but those who are not provided the opportunity to.

Bill Gates’ war on disease, poverty is an uphill battle
Continue reading

Students Will Spend Year Doing Career-Changing Research Thanks to HHMI

This year, 116 medical, dental, and veterinary students from 47 schools across the country will take a break from memorizing molecular metabolism and studying drug interactions to spend a year in a lab doing hands-on research. The break from regular coursework, funded through a $4 million Howard Hughes Medical Institute (HHMI) initiative, is intended to give students an opportunity to immerse themselves in science and consider whether they want to pursue a career as a physician-scientist.

Nearly 500 medical students applied for the research year through the HHMI-National Institutes of Health (NIH) Medical Research Scholars and HHMI Medical Research Fellows programs. Both efforts seek to strengthen and expand the pool of medically-trained researchers. The funding HHMI provides is a great resource.

“We want medical, dental, and veterinary students to become immersed in the life of academic science for at least a year. And we hope they get so engaged in the process and life of scientific research that they will decide to continue it for the rest of their lives,” says Peter Bruns, HHMI’s vice president for grants and special programs. “We need more doctors who do basic research to improve human health.”

As part of its commitment to fostering the translation of basic research discoveries into improved diagnoses and treatments, HHMI has developed a range of programs to nurture the careers of researchers who bridge the gap between clinical medicine and basic science. In addition to the programs for medical students, the Institute supports medical training for Ph.D. students in the basic sciences and has made specific efforts to fund top physician-scientists as HHMI investigators.

The medical research scholars and fellows programs are open to medical, dental, and veterinary students enrolled in U.S. schools. Most have completed the second or third year of their professional program when they spend a year working in a lab either at the NIH or at an academic medical center or research university they select. During the last 25 years, more than 2,100 students have participated.

The HHMI Medical Research Fellowships program allows medical, dental, and veterinary students to pursue biomedical research at a laboratory anywhere in the United States except the NIH campus in Bethesda. Each student submits a research plan to work in a specific lab with a mentor they have identified. Since 1989, about 1,200 students have participated.

This year, 74 students from 26 medical schools and two veterinary schools were chosen as fellows from a pool of 274. While most students elect to stay at their home institution to do their research, this year 17 fellows will work in labs at a different school. Their research topics include schizophrenia, wound healing, organ development, and many other important biological questions.

The HHMI-NIH Research Scholars program was established in 1985 to encourage medical students to pursue research by allowing them to take a year off from their medical studies. The program has since been expanded to include dental and veterinary students. It has enabled about 1,000 students to work in NIH labs.

Students selected as research scholars often enter the program with only a general idea of what type of research they would like to do. As soon as they are accepted, they begin researching the more than 1,100 laboratories at NIH. They meet with a number potential mentors before finalizing which project to pursue under the guidance of their NIH advisor and HHMI’s staff. The students are sometimes called “cloister scholars” because they live in apartments or dorm-style rooms in a refurbished cloister on the NIH campus in Bethesda.

This year, 42 students from 28 medical schools and one veterinary school were chosen as research scholars. More than 200 students from 93 schools applied.

Related: Directory of Science and Engineering Scholarships and Fellowships$600 Million for Basic Biomedical ResearchHHMI Expands Support of Postdoctoral ScientistsGenomics Course For College Freshman Supported by HHMI at 12 Universities

All About Circuits

All About Circuits is an online textbook covering electricity and electronics. Topics covered include: Basic Concepts of Electricity’ OHM’s Law; Electrical Safety; Series and Parallel Circuits; Physics of Conductors and Insulators; Solid-State Device Theory; Binary Arithmetic; Logic Gates; Switches; Digital Storage? It is a great resource. Enjoy.

Related: Textbook RevolutionOpen Access Education MaterialsHigh-quality Curricula and Education Resources for TeachersOnline Mathematics Textbooks

Mycoremediation and its Applications In Oil Spills

The webcast shows a talk by mycologist Paul Stamets on Bioremediation with Fungi (an Excerpt from Mushrooms as Planetary Healers). In response he to the British Petroleum/Halliburton oil spill he posted a message, Fungi Perfecti: the petroleum problem

Various enzymes (from mushroom mycoremediation) breakdown a wide assortment of hydrocarbon toxins.
..
My work with Battelle Laboratories, in collaboration with their scientists, resulted in TAH’s (Total Aromatic Hydrocarbons) in diesel contaminated soil to be reduced from 10,000 ppm to < 200 ppm in 16 weeks from a 25% inoculation rate of oyster (Pleurotus ostreatus) mycelium, allowing the remediated soil to be approved for use as landscaping soil along highways. [paper]

Aged mycelium from oyster mushrooms (Pleurotus ostreatus) mixed in with ‘compost’ made from woodchips and yard waste (50:50 by volume) resulted in far better degradation of hydrocarbons than oyster mushroom mycelium or compost alone.

Oyster mushrooms producing on oil contaminated soil (1–2% = 10,000–20,000 ppm)… Soil toxicity reduced in 16 weeks to less than ~ 200 ppm, allowing for plants, worms and other species to inhabit whereas control piles remained toxic to plants and worms.

New crop of mushrooms form several weeks later [after contaminating with oil]. The spores released by these mushrooms have the potential – as a epigenetic response – to pre-select new strains more adaptive to this oil-saturated substrate.

I proposed in 1994 that we have Mycological Response Teams (MRTs) in place to react to catastrophic events, from hurricanes to oil spills. We need to preposition composting and mycoremediation centers adjacent to population centers

On a grand scale, I envision that we, as a people, develop a common myco-ecology of consciousness and address these common goals through the use of mycelium. To do so means we need to spread awareness and information. Please spread the word of mycelium.

Related: Saving the World with Science and MushroomsFun FungiThinking Slime Moulds

Why Does the Moon Appear Larger on the Horizon?

Why does the Moon look so huge on the horizon?

If you’ve ever seen the Moon rising over the horizon, looking so fat and looming that you felt like you could fall right into it, then you’ve been a victim of the famous Moon Illusion. And it is an illusion, a pervasive and persuasive one.

When the Moon is on the horizon, your brain thinks it’s far away, much farther than when it’s overhead. So the Ponzo Illusion kicks in: your brain sees the Moon as being huge, and it looks like you could fall into it. The Illusion works for the Sun, too. In fact, years ago I saw Orion rising over a parking lot, and it looked like it was spread across half the sky. It’s an incredibly powerful illusion.

Oddly enough, when it’s on the horizon, the Moon actually is farther away than when it’s overhead. Not by much, really, just a few thousand kilometers (compared to the Moon’s overall distance of about 400,000 kilometers).

So the Moon Illusion is just that. It’s not the air acting like a lens, or foreground objects making it look big by comparison. It’s just the way we see the shape of the sky together with the well-known Ponzo Illusion.
..
Science taking something we perceive as real, breaking it down, and showing it to be an interesting but decidedly unreal illusion? Well, that’s what science does! It helps us not only understand the world better, but it also makes the world cooler, too.

Related: Why People Often Get Sicker When They’re StressedWhy is it Colder at Higher Elevations?Albert Einstein, Marylin Monroe Hybrid ImageAnswers to Why?Bigger Impact: 15 to 18 mpg or 50 to 100 mpg?

Iron Man 2 Via 3-D Printing

Ever since I first heard of 3-D printing I have though it was very cool. Well first I thought it was science fiction, not real, but a cool idea. Then when I found out it was real I thought it was very cool. Not only is it cool, it is practical. Iron Man 2’s Secret Sauce: 3-D Printing

Maybe the most cutting-edge facet of Iron Man 2’s production was the real-life fabrication of the suits. Using 3-D printers, the film’s production company, Legacy Effects, was able to have artists draw an art concept–and then physically make that concept in just four hours.

In addition to speed, the benefit is that you can print out costumes custom fitted to the actors, down to the millimeter. And with custom-fitted suits, Robert Downey, Jr. and Mickey Rourke can put a lot more action into their fight scenes, without the wonky effect of layering on too much CGI. (Downey complained that the original Iron Man suits, which were made more traditionally, were too clunky to act in, and extremely uncomfortable.)

Related: Open Source 3-D Printing3D Printing is HereA plane You Can Print

Trying to Find Pest Solutions While Hoping Evolution Doesn’t Exist Doesn’t Work

How To Make A Superweed

Melander wondered why some populations of scales were becoming able to resist pesticides. Could the sulfur-lime spray trigger a change in their biology, the way manual labor triggers the growth of callouses on our hands? Melander doubted it. After all, ten generations of scales lived and died between sprayings. The resistance must be hereditary, he reasoned. He sometimes would find families of scales still alive amidst a crowd of dead insects.

This was a radical idea at the time. Biologists had only recently rediscovered Mendel’s laws of heredity. They talked about genes being passed down from one generation to the next, yet they didn’t know what genes were made of yet. But they did recognize that genes could spontaneously change–mutate–and in so doing alter traits permanently.

In the short term, Melander suggested that farmers switch to fuel oil to fight scales, but he warned that they would eventually become resistant to fuel oil as well. In fact, the best way to keep the scales from becoming entirely resistant to pesticides was, paradoxically, to do a bad job of applying those herbicides. By allowing some susceptible scales to survive, farmers would keep their susceptible genes in the scale population. “Thus we may make the strange assertion that the more faulty the spraying this year the easier it will be to control the scale the next year,” Melander predicted.

What’s striking is how many different ways weeds have found to overcome the chemical. Scientists had thought that Roundup was invincible in part because the enzyme it attacks is pretty much the same in all plants. That uniformity suggests that plants can’t tolerate mutations to it; mutations must change its shape so that it doesn’t work and the plant dies. But it turns out that many populations of ryegrass and goosegrass have independently stumbled across one mutation that can change a single amino acid in the enzyme. The plant can still survive with this altered enzyme. And Roundup has a hard time attacking it thanks to its different shape.

Another way weeds fight off Roundup is through sheer numbers. Earlier this year an international team of scientists reported their discovery of how Palmer amaranth resists glyphosate. The plants make the ordinary, vulnerable form of the enzyme. But the scientists discovered that they have many extra copies of the gene for the enzyme–up to 160 extra copies, in fact.

What makes the evolution of Roundup resistance all the more dangerous is how it doesn’t respect species barriers. Scientists have found evidence that once one species evolves resistance, it can pass on those resistance genes to other species. They just interbreed, producing hybrids that can then breed with the vulnerable parent species.

Another great article from Carl Zimmer.

Related: Amazing Designs of LifeMicrocosm by Carl ZimmerParasite RexPigs Instead of Pesticides

Food Rules: An Eater’s Manual

Good advice from author Michael Pollan on eating from his new book, Food Rules: An Eater’s Manual. Essentially he suggests eating food. Stuff you can picture in the original form (apples, cashews, celery, trout, tomatoes, grapes, steak, strawberries, milk, figs, peppers, peaches, almonds, chicken) not chemical additions (yes I know real food is made up of chemical – this is additional chemicals). One quote: “the biggest gains in human health can be made from changes in food policy.”

Human health is a complex topic but if we care about our health it is a tough issue we have to try to understand. He makes a good point in his talk about the value of exercise. I do believe exercise is an important component to how to be healthy (as is food – I don’t think it is easy to be healthy without both).

Related posts: Rethinking the Food Production SystemDon’t Eat What Doesn’t RotEat food. Not too much. Mostly plants.The Calorie Delusion

Webcast on Finding the Missing Memristor

Very interesting lecture on finding the missing memristor by R. Stanley Williams. From our post in 2008:

How We Found the Missing Memristor By R. Stanley Williams:

For nearly 150 years, the known fundamental passive circuit elements were limited to the capacitor (discovered in 1745), the resistor (1827), and the inductor (1831). Then, in a brilliant but underappreciated 1971 paper, Leon Chua, a professor of electrical engineering at the University of California, Berkeley, predicted the existence of a fourth fundamental device, which he called a memristor.

Related: Demystifying the Memristorposts on computer sciencevon Neumann Architecture and Bottleneck