Tag Archives: Technology

Citizen Science: Use Your Smart Phone to Help Scientists

10 Ways You Can Use Your Smartphone to Advance Science by Matt Soniak

Scientists have started to use the abilities and prevalence of smartphones to their advantage, creating apps specifically for their studies and crowdsourcing observation and data collection. When almost everyone has an Internet connection, a camera, and a GPS unit right in their phone, almost anyone can gather, organize, and submit data to help move a study along.

The Indicator Bats Program (iBats), a joint project of the Zoological Society of London’s Institute of Zoology and The Bat Conservation Trust, got its start with a couple of researchers working in Transylvania (of course) in 2006. The idea of the project is to identify and monitor bat populations around the world by the ultrasonic echo-location calls they use to navigate and find prey.

The goal of Project NOAH (Networked Organisms and Habitats) is pretty ambitious: “build the go-to platform for documenting all the world’s organisms.” Their app has two modes. “Spottings” lets you take photos of plants and animals you see, categorize and describe them and then submit the data for viewing on NOAH’s website and use by researchers for population and distribution studies.

Invasive plants and animals can crowd out natives, compete with them for food sources and alter the fire ecology of an ecosystem, disrupting its natural balance. Researchers and programmers from UCLA, the Santa Monica Mountains National Recreation Area and the University of Georgia have teamed up to create the What’s Invasive citizen science program and smartphone app. Volunteers can use the app to look up lists of the top invasive species in their area, created by National Park Service rangers and biologists. If they spot a plant or animal from the list, they submit a geo-tagged observation, with optional picture and text notes, so that scientists can locate, identify, study try to remove the species.

Great stuff.

Related: Backyard Scientists Aid ResearchCellphone MicroscopeThe Great Sunflower Project

The Chemistry of Fireworks

The video features John A. Conkling, Ph.D., who literally wrote the book on fireworks — he is the author of The Chemistry of Pyrotechnics.

The earliest documentation of fireworks dates back to 7th century China.

A Syrian named Hasan al-Rammah wrote of rockets, fireworks, and other incendiaries, using terms that suggested he derived his knowledge from Chinese sources, such as his references to fireworks as “Chinese flowers”.

Chinese fireworks began to gain popularity around the mid-17th century.

Related: Cooking with Chemistry, Hard CandyThe Chemistry of CookingVideo of Briggs-Rauscher Oscillating Chemical Reaction

Repair Cafes in The Netherlands

Repair Cafes in The Netherlands Give Life Back to Broken Objects

A new brand of DIY self-sufficiency is spreading across The Netherlands. Skilled craftswomen, mechanics, seamstresses, and handypersons are banding together to resist disposable consumer culture. It is the rise of the Repair Cafe, a place where neighbors get together to extend the life of their material belongings. “Fixers” mend clothes, restore furniture, rehabilitate electrical appliances, and enjoy each other’s company while industriously toiling away. The first cafe was founded by Martine Postma in Amsterdam in October of 2009. Today, there are 20 fully operational Repair Cafes, and 50 more in the planning stages.

I really like these efforts. We throw away too much stuff that has plenty of useful life left. Also it is a great way to build community. And it is an interesting way to learn about products we use everyday (both by fixing them and having your items fixed). The throw away culture is something we should aim to change. By these actions and also by engineers designing products to be fixed instead of thrown away. I donated to a similar fixer collective in Brooklyn via Kickstarter.

Related: Fix it GooBook Explores Adventures in MakingTeaching Through Tinkering

NASA Biocapsules Deliver Medical Interventions Based Upon What They Detect in the Body

Very cool innovation from NASA. The biocapsule monitors the environment (the body it is in) and responds with medical help. Basically it is acting very much like your body, which does exactly that: monitors and then responds based on what is found.

The Miraculous NASA Breakthrough That Could Save Millions of Lives

The Biocapsules aren’t one-shot deals. Each capsule could be capable of delivering many metred doses over a period of years. There is no “shelf-life” to the Biocapsules. They are extremely resilient, and there is currently no known enzyme that can break down their nanostructures. And because the nanostructures are inert, they are extremely well-tolerated by the body. The capsules’ porous natures allow medication to pass through their walls, but the nanostructures are strong enough to keep the cells in one place. Once all of the cells are expended, the Biocapsule stays in the body, stable and unnoticed, until it is eventually removed by a doctor back on Earth.

Dr. Loftus [NASA] thinks we could realistically see wildspread usage on Earth within 10 to 15 years.

The cells don’t get released from the capsule. The cells inside the capsule secrete therapeutic molecules (proteins, peptides), and these agents exit the capsule by diffusion across the capsule wall.

NASA plans to use the biocapsules in space, but they also have very promising uses on earth. They can monitor a diabetes patient and if insulin is needed, deliver it. No need for the person to remember, or give themselves a shot of insulin. The biocapsule act just like out bodies do, responding to needs without us consciously having to think about it. They can also be used to provide high dose chemotherapy directly to the tumor site (thus decreasing the side effects and increasing the dosage delivered to the target location. Biocapsules could also respond to severe allergic reaction and deliver epinephrine (which many people know have to carry with them to try and survive an attack).

It would be great if this were to have widespread use 15 years from now. Sadly, these innovations tend to take far longer to get into productive use than we would hope. But not always, so here is hoping this innovation from NASA gets into ourselves soon.

Related: Using Bacteria to Carry Nanoparticles Into CellsNanoparticles With Scorpion Venom Slow Cancer SpreadSelf-Assembling Cubes Could Deliver MedicineNanoengineers Use Tiny Diamonds for Drug Delivery

How Lysozyme Protein in Our Tear-Drops Kill Bacteria

A disease-fighting protein in our teardrops has been tethered to a tiny transistor, enabling UC Irvine scientists to discover exactly how it destroys dangerous bacteria. The research could prove critical to long-term work aimed at diagnosing cancers and other illnesses in their very early stages.

Ever since Nobel laureate Alexander Fleming found that human tears contain antiseptic proteins called lysozymes about a century ago, scientists have tried to solve the mystery of how they could relentlessly wipe out far larger bacteria. It turns out that lysozymes have jaws that latch on and chomp through rows of cell walls like someone hungrily devouring an ear of corn.

“Those jaws chew apart the walls of the bacteria that are trying to get into your eyes and infect them,” said molecular biologist and chemistry professor Gregory Weiss, who co-led the project with associate professor of physics & astronomy Philip Collins.

The researchers decoded the protein’s behavior by building one of the world’s smallest transistors – 25 times smaller than similar circuitry in laptop computers or smartphones. Individual lysozymes were glued to the live wire, and their eating activities were monitored.

“Our circuits are molecule-sized microphones,” Collins said. “It’s just like a stethoscope listening to your heart, except we’re listening to a single molecule of protein.”

It took years for the UCI scientists to assemble the transistor and attach single-molecule teardrop proteins. The scientists hope the same novel technology can be used to detect cancerous molecules. It could take a decade to figure out but would be well worth it, said Weiss, who lost his father to lung cancer.

“If we can detect single molecules associated with cancer, then that means we’d be able to detect it very, very early,” Weiss said. “That would be very exciting, because we know that if we treat cancer early, it will be much more successful, patients will be cured much faster, and costs will be much less.”

The project was sponsored by the National Cancer Institute and the National Science Foundation. Co-authors of the Science paper are Yongki Choi, Issa Moody, Patrick Sims, Steven Hunt, Brad Corso and Israel Perez.

Related: full press releaseWhy ‘Licking Your Wounds’ WorksHow Bleach Kills BacteriaAlgorithmic Self-Assembly

Remote Presence Robot

Anybots allow remote presence today. They can be rented for just $600 a month. You can purchase your own for just $15,000.

The newest version, just unveiled at a CES has a much bigger screen (which seems very wise to me).

This is another example of robots making it into real use. While I am sure few workplaces are ready for this jump today, 10 or 20 years from now a telepresence robot (that can do much more) is likely I think to be significantly used. Not only will functionality increase, prices will drop dramatically: as the wonderful combination so often happens with technology. There is a great deal of effort going into making commercial viable “personal” robots. I think these efforts will make significant inroads in the next 10-20 years.

My old office wouldn’t have been willing to pay $15,000 but one of our developers looked into creating his own (after he moved and was working remotely). He hasn’t quite gotten it done yet, but may at some point.

Related: Managing By Rolling Around (I like how the robot owner used the robot to have his mother attend his wedding (and dressed up the robot) – Robot Finds Lost Shoppers and Provides DirectionsNew Yorkers Help Robot Find Its Way in the Big CityToyota Partner Robots

Robot Prison Guards in South Korea

photo of robot prison guard

Robotic prison wardens to patrol South Korean prison

The one-month trial will cost 1bn won (£554,000) and is being sponsored by the South Korean government. It is the latest in a series of investments made by the state to develop its robotics industry.

The country’s Ministry of Knowledge Economy said in January that it had spent the equivalent of £415m on research in the sector between 2002 and 2010. It said the aim was to compete with other countries, such as Japan, which are also exploring the industry’s potential.

In October the ministry said the Korean robot market had recorded 75% growth over the past two years and was now worth about £1 billion…

The potential market for robotics is huge. Smart countries are investing in becoming the centers for excellence in that area. Japan and South Korea may well be in the lead. The USA, Germany and China also have strong communities.

Related: Robot Finds Lost Shoppers and Provides DirectionsThe Robotic Dog (2008 post)Soft Morphing Robot FutureHonda’s Robolegs Help People WalkRoachbot: Cockroach Controlled Robot

Encouraging Curiosity in Kids

How do you help make your children scientifically literate? I think the biggest thing you can do is encourage curiosity.

One way to encourage curiosity it is by answering their questions (and not saying: I am too busy, don’t bother me, don’t ask me?, stop asking why…). I know adults are busy and have all sorts of stuff we are trying to get done; and the question about why I need to wash my hands doesn’t seem worth answering. But I think anytime a kid is asking why is an opportunity to teach and encourage them to keep being curious.

It is very easy to shut off this curiosity, in our society anyway (we do it to the vast majority of people). The biggest difference I see between adults and kids is not maturity or responsibility but curiosity (or lack thereof in adults) and joy (versus adults who seem to be on valium all the time – maybe they are).

As they grow up kids will have lots of science and technology questions that you don’t know the answers to. If you want them to be curious and knowledgeable, put in the effort to find answers with them. You have to help them find the answers in a way that doesn’t turn them off. If you just say – go look it up yourself (which really they can do), maybe the 2% that are going to become scientists will. But most kids will just give up and turn off their curiosity a little bit more (until eventually it is almost gone and they are ready to fit into the adult world). Which is very sad.

Once you get them used to thinking and looking things up they will start to do this on their own. A lot of this just requires thinking (no need to look things up – once a certain base knowledge is achieved). But you need to set that pattern. And it would help if you were curious, thought and learned yourself.

Photo of kids intently studying on a Malaysian beach

My mom with a group of Malaysia kids apparently intent on learning something. I am there, but not visible in this photo. Photo by my father.

While walking in the park, see one of those things you are curious about and ask why does…? It is good to ask kids why and let them think about it and try and answer. Get them in the habit of asking why themselves. And in those cases when no-one knows, take some time and figure it out. Ask some questions (both for yourself – to guide your thinking – and to illustrate how to think about the question and figure things out). If you all can’t find an explanation yourselves, take some time to look it up. Then at dinner, tell everyone what you learned. This will be much more interesting to the kids than forcing them to elaborate on what they did today and help set the idea that curiosity is good and finding explanations is interesting.

It is fun as a kid if your parent is a scientist or engineer (my father was an engineering professor).

You often don’t notice traits about yourself. In the same what I know what red looks like to me, I figure we both see this red shirt you see the red that I do. But maybe you don’t. I tend to constantly be asking myself why. If I see something new (which is many, many times a day – unless I am trapped in some sad treadmill of sameness) I ask why is it that way and then try and answer. I think most of this goes on subconsciously or some barely conscious way. I actually had an example a few months ago when I was visiting home with my brother (who is pretty similar to me).

As we were driving, I had noticed some fairly tall poles that seemed to have really small solar panels on top. I then noticed they were space maybe 20 meters apart. Then saw that there seemed to be a asphalt path along the same line. I then decided, ok, they are probably solar panels to power a light for the path at night. Then my brother asked why are there those small solar panel on top of that pole?

Continue reading

Quixperito – New Social Bookmarking Site

I have created a new social bookmarking site. The site is meant to highlight good content online and is moderated to remove low value and spam content. By developing a community of users that share interests in worthwhile content on a variety of topics I hope to create a useful resource for people.

The topics included now are limited to help focus on high value content and develop a community of users around various topics. Please join and participate. Without a community the value of the site is low. Currently there is a technology section that will be of interest to readers of this Curious Cat Science and Engineering Blog.

Other sections include: science, investing and business.

If you are interested in helping build the community please join and participate. You can post your related articles and posts and find new readers for your content. And by voting on others posts you can help highlight posts that the community finds worth reading.

Related: Curious Cat science and engineering search enginescience and engineering links