Tag Archives: webcasts

Simple Webcasts on Evolution and Genes

Webcast from 23andme on human evolution. Continued: What are genes?, What are SNPs? (Single Nucleotide Polymorphisms), Where do your genes come from? and What is phenotype?. These webcasts provide an easy to understand overview. Sergey Brin, Google co-founder and husband of 23andme co-founder Anne Wojcicki. People have 23 pairs of chromosomes.

What are SNPs?:

For a variation to be considered a SNP, it must occur in at least 1% of the population. SNPs, which make up about 90% of all human genetic variation, occur every 100 to 300 bases along the 3-billion-base human genome.

SNPs do not cause disease, but they can help determine the likelihood that someone will develop a particular illness. One of the genes associated with Alzheimer’s disease, apolipoprotein E or ApoE, is a good example of how SNPs affect disease development. ApoE contains two SNPs that result in three possible alleles for this gene: E2, E3, and E4. Each allele differs by one DNA base, and the protein product of each gene differs by one amino acid.

Related: Understanding the Evolution of Human Beings by CountryEvolution is Fundamental to Science8 Percent of the Human Genome is Old Virus Genesscience webcasts

Friday Fun: House Hippo

I am not a huge fan of wild animal pets but this one is pretty cool. I still think they are crazy, Hippos kill more people than any animal in Africa, that isn’t what I look for in a house-guest (well actually people kill a lot more people than any animal but still…). It is pretty cool the Hippo is free to go between wild and their home and does so.

Related: Leopard Bests CrocodilePolar Bears and HuskiesHome Engineering: Windmill for Electricity

Rat Brain Cells, in a Dish, Flying a Plane

Adaptive Flight Control With Living Neuronal Networks on Microelectrode Arrays (open access paper) by Thomas B. DeMarse and Karl P. Dockendorf Department of Biomedical Engineering, University of Florida

investigating the ability of living neurons to act as a set of neuronal weights which were used to control the flight of a simulated aircraft. These weights were manipulated via high frequency stimulation inputs to produce a system in which a living neuronal network would “learn” to control an aircraft for straight and level flight.

A system was created in which a network of living rat cortical neurons were slowly adapted to control an aircraft’s flight trajectory. This was accomplished by using high frequency stimulation pulses delivered to two independent channels, one for pitch, and one for roll. This relatively simple system was able to control the pitch and roll of a simulated aircraft.

When Dr. Thomas DeMarse first puts the neurons in the dish, they look like little more than grains of sand sprinkled in water. However, individual neurons soon begin to extend microscopic lines toward each other, making connections that represent neural processes. “You see one extend a process, pull it back, extend it out — and it may do that a couple of times, just sampling who’s next to it, until over time the connectivity starts to establish itself,” he said. “(The brain is) getting its network to the point where it’s a live computation device.”

To control the simulated aircraft, the neurons first receive information from the computer about flight conditions: whether the plane is flying straight and level or is tilted to the left or to the right. The neurons then analyze the data and respond by sending signals to the plane’s controls. Those signals alter the flight path and new information is sent to the neurons, creating a feedback system.

“Initially when we hook up this brain to a flight simulator, it doesn’t know how to control the aircraft,” DeMarse said. “So you hook it up and the aircraft simply drifts randomly. And as the data come in, it slowly modifies the (neural) network so over time, the network gradually learns to fly the aircraft.”

Although the brain currently is able to control the pitch and roll of the simulated aircraft in weather conditions ranging from blue skies to stormy, hurricane-force winds, the underlying goal is a more fundamental understanding of how neurons interact as a network, DeMarse said.

Related: Neural & Hybrid Computing Laboratory @ University of Florida – UF Scientist: “Brain” In A Dish Acts As Autopilot, Living ComputerRoachbot: Cockroach Controlled RobotNew Neurons in Old Brainsposts on brain researchViruses and What is LifeGreat Self Portrait of Astronaut Engineer

Save the Microbes, Save the World

The panel starts speaking at about minute 14. The technical presentation of the video could be better (likely will be as we develop good, easy ways to capture speaking events for web delivery) but their is some interesting content.

Related: MicrobesSecret Life of MicrobesSciVee: Science WebcastsPlants, Unikonts, Excavates and SARs

Wednesday Fun: Dancing Robot Hexapod

Dancing Robot Hexapod

Created by students from the Upper Austria University of Applied Science for the Hexapod Robot competition that happens yearly, this dancing robot strutted its six legs, costumed with hat, sunglasses and Ali-G looking goat tee and used its metal joints to prove it has got rhythm. It is no wonder it is the winner, for it is highly entertaining!

Related: RoboCup German Open 2008LEGO Sumo Robotic ChampionshipMusical RobotsRobo-One Grand Championship in Tokyo

Documentary on 5 Women Majoring in Science and Math at Ohio State

In the clip, Jennifer Jones, a civil engineering student who talks about her challenges and determination to overcome obstacles in her honors program at Ohio State University. The clip is from Gender Chip Project, a documentary following 5 women majoring in the sciences, engineering and math at Ohio State University.

Related: Women Working in ScienceWomen Choosing Other Fields Over Engineering and MathGirls in Science and EngineeringFixing Engineering’s Gender Gap

Vampire Moth Discovered

Vampire Moth Discovered

Entomologist Jennifer Zaspel at the University of Florida in Gainesville said the discovery suggests the moth population could be on an “evolutionary trajectory” away from other C. thalictri populations.

In January, she will compare the Russian population’s DNA to that of other populations and other species to confirm her suspicions. “Based on geography, based on behavior, and based on a phenotypic variation we saw in the wing pattern, we can speculate that this represents something different, something new,” Zaspel said.

Only male moths exhibit blood feeding, she noted, raising the possibility that as in some species of butterflies and other moths, the Russian moths do it to pass on salt to females during copulation.

“There is no evidence it prolongs the life of the male, or anything like that,” she said. “So we suspect that it is probably going to the female.” The sexual gift, she said, would provide a nutritional boost to young larvae that feed on leaf-rich, but sodium-poor, diets.

Related: Darwin’s Orchid PredictionWhy Insects Can’t Fly Straight at NightEat Less Salt to Save Your Heart

Webcast: Engineering Education in the 21st Century

National Academy of Engineering President, William A. Wulf, discusses the future of engineering education. Very good quick overview (skip to 1m 45s point for start of the speech) – see links below for additional resources. From the speech:

  • “the practices of engineering has changed enormously in the last 20 years and engineering education has changed hardly at all.”
  • “It is a disgrace: about half the students who start in engineering do not finish in engineering… we are not weeding out the poor students we are turning off half the students with the way that we teach”
  • “engineering schools generally have not provided courses for the general liberal arts students but they must.”

view the rest of the talk

Related: Educating the Engineer of 2020: NAE ReportEducating Engineers for 2020 and Beyond by Charles VestWomen Choosing Other Fields Over Engineering and MathEducating Engineering GeeksLeah Jamieson on the Future of Engineering EducationHouse Testimony on Engineering Education